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A NUMERICAL SCHEME FOR SPATIAL FRATIONAL

DIFFERENTIAL EQUATIONS BY RBFS

Z. Q. XING, Y. DUAN, Y. M. ZHENG

Abstract. In this paper, we combine Gaussian integration formula and radi-
al basis function(RBF) interpolation to obtain a numerical scheme for spatial
given, fractional differential equations. Utilizing the stable conditions of this
schemed, we provide the main analytical results, including local truncated er-

ror from Taylor expansion and RBF theory, and convergence rate, which at
least is same with shifted Grünwald formula. For verification, some numer-
ical examples are constructed to demonstrate the availability and verify the
theoretical results.

1. Introduction

In recent years, fractional differential equations, equipped with suitable initial
conditions, reads as follow:

Dα
∗ y(x) = f(x, y(x)).

Where α > 0 (but not necessarily α ∈ N).
This series of equations is extensively used in engineering and mathematical

fields, such as porous media, anomalous diffusion, viscoelastic mechanics, Hamil-
tonian chaos systems, bioengineering[1, 2, 3, 4](including references therein). They
are involved to model physical processes referring to memory properties, genetic
characters and path dependence. However, only a very few fractional differential
equations can be solved analytically because of their complicated form. Hence, the
recent rapid development of numerical methods for fractional differential equations
has attracted more and more attentions from researchers.

Until now, a lot of numerical methods have been obtained. Diethelm and Walz[5]
and Diethelm et al.[6, 7]derived extrapolation method, predictor-corrector method
and Adams method for fractional differential equations from integer order partial
differential equations. Meerschaert and Tadejeran [8, 9] proposed a finite difference
approximation of fractional advection-diffusion flow equation and two-sided space-
fractional differential equation. Liu, Zhuang et al.[10] and Liu, Zhuang et al.[11]
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obtained the implicit difference approximation for space-time fractional diffusion e-
quation in 1-D and 2-D case. Momani and Shawagfeh[12] and Momani, Odibat and
Erturk[13] used decomposition method for fractional Riccati differential equation
and variation iteration method(VIM) to solve a space and time fractional diffu-
sion wave equation. Langlands and Henry[14] presented a novel scheme through
L1 scheme form[15] and implicit Euler scheme. Lin and Xu[16] proposed a method
to solve time-fractional fractional differential equation based on finite difference
method in time and spectral method in space. Ervin and Roop[17] gave a theoretic
framework of variational formulation for the stationary fractional advection dis-
persion equation. In their another paper[18], Ervin , Heuer and Roop solved time
dependent, nonlinear, spatial fractional diffusion differential equation by finite el-
ement method and displayed corresponding prior error estimate. Ford et al.[19]
proposed a finite element method for time fractional partial differential equation.
Sousa[20] found a high accuracy method based on approximating fractional de-
rivative by spline interpolation. Piret and Hanert[21] involved RBF-FD method
in integer partial differential equation into spatial fractional differential equation.
Pedas and Tamme[22] presented the convergence behavior of spline collocation ap-
proximations for nonlinear fractional differential equations. Rada and Kazemb[23]
solved numerical solution of fractional differential equations with a Tau method
based on Legendre and Bernstein polynomials. Xianshan[24] investigated the exis-
tence and uniqueness of a positive solution to a two-point boundary-value problem
of fractional-order switched system with p-Laplacian operator.

In 1990, Kansa[25, 26] proposed a collocation method with radial basis func-
tion(RBF), which provide us a new idea to solve partial differential equations nu-
merically. Although most work to date on RBFs relates to scattered data approxi-
amtion and in general to interpolation theory, there has recently been an increasing
interest in their use for solving PDEs. This approach, which approximates the w-
hole solution of PDE by a translates of RBFs, is very attractive due to the fact
that it is a truly meshless method and spatial dimension independent, which can
be easily applied to solve high order differential equations.

Another merit of RBF-based meshless methods is no explicit connectivity be-
tween these nodes required, in contrast to the information required to store volumes,
surfaces, and nodes in a conformal hexahedral or tetrahedral mesh-based method.
The flexibility in the node distribution allows for conformal and multi-scale model-
ing. Additionally, adaptive refinement can be performed with a significantly smaller
computational effort since nodes can be added, removed, or displaced with an over-
head much smaller than conventional re-meshing.

The remainder of this paper is organized as follows. In section 2, we deduce the
algorithm for solving spatial fractional differential equations, further on, we present
stable conditions, truncated error and convergence rate estimate of the algorithm.
In section 3, a numerical example is given to verify the proposed method. Finally,
a remark from the numerical results is given in section 4.

2. Discretization and collocation

Spatial fractional differential equations are often used to model anomalous diffu-
sion and dispersion phenomenon, which disagree with classical Brownian motions.
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Its basic model can be described as

∂u(x, t)

∂t
= −v(x)

∂u(x, t)

∂x
+ d(x)

∂βu(x, t)

∂xβ
+ f(x, t), L < x < R.

where ∂β

∂xβ stands for Riemann-Liouville fractional derivative of order β, detail
information referred to [27]. Furthermore, for physical consideration, β must fit
1 < β ≤ 2. When v(x) ≥ 0 and d(x) ≥ 0, the particles move from left to right.
Additional equations are initial condition u(x, t = 0) = u0(x) and boundary condi-
tions u(L, t) = ϖ1(t), u(R, t) = ϖ2(t). For the sake of simplicity, we consider the
follow equation.{

∂u(x,t)
∂t = d(x, t)∂

βu(x,t)
∂xβ + s(x, t).

u(x, 0) = θ(x), u(L, t) = ϖ1(t), u(R, t) = ϖ2(t).
(1)

Where ∂βu(x,t)
∂xβ = 1

Γ(2−β)
d2

dx2

∫ x

L
(x − ξ)1−βu(ξ, t)dξ,1 < β < 2, diffusion coefficient

d(x, t) ≥ 1, s(x, t) is reaction term.
RBF interpolation is used to discrete (1) and unsymmetric collocation method

is engaged. Larsson and Fornberg[28] have investigated several collocation methods
in RBF interpolation.

2.1. Discretization by RBF meshless method. In (1), let tn = n∆t and 0 ≤
t ≤ T , using explicit Euler scheme, ∂u(x,t)

∂t can be approximated as

∂u(x, t)

∂t
|t=tn ≈ u(x, tn+1)− u(x, tn)

∆t
. (2)

According to the relation of Riemann-Liouville fractional derivative and Caputo
fractional derivative [27],

∂βu(x, t)

∂xβ
=

 1
Γ(2−β)

∫ x

L
uξξ(ξ,t)
(x−ξ)β−1 dξ +

u(L,t)(x−L)−β

Γ(1−β) +
uξ(ξ,t)|ξ=L(x−L)1−β

Γ(2−β) .
(3)

From(2) and (3)we can get an approximation of (1) at t = tn,

u(x, tn+1)− u(x, tn)

∆t
= s(x, tn) + d(x, tn)


1

Γ(2−β)

∫ x

L
uξξ(ξ,t)
(x−ξ)β−1 dξ+

u(L,t)(x−L)−β

Γ(1−β) +
uξ(ξ,t)|ξ=L(x−L)1−β

Γ(2−β) .

(4)

Let {xk}Mk=1 distribute in district [L,R], we assume that

u(x, t) =
M∑
k=1

λk(t)ϕ(∥x− xk∥). (5)

When x = xm, we substitute (5) into (4),

u(xm, tn+1)− u(xm, tn)

∆t
= snm + dnm

M∑
k=1

λk(tn)ĝ(xm, xk). (6)

Where

ĝ(xm, xk) =

 1
Γ(2−β)

∫ xm

L

ϕ
′′
ξξ(∥ξ−xk∥)
(xm−ξ)β−1 dξ + ϕ(∥L−xk∥)(x−L)−β

Γ(1−β) +

ϕ
′
ξ(∥ξ−xk∥)|ξ=L(x−L)1−β

Γ(2−β) .
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snm = s(xm, tn), d
n
m = d(xm, tn).

For
∫ xm

L

ϕ
′′
ξξ(∥ξ−xk∥)
(xm−ξ)β−1 dξ, if we let ξ = xm−L

2 y + xm+L
2 , it can be rewritten as

xm − L

22−β

∫ 1

−1

ϕ
′′

yy(∥xm−L
2 y + xm+L

2 − xk∥)
.

(Ly − L+ xm − xmy)β−1dy (7)

(7) is a standard Gaussian integration, it can be computed by

xm − L

22−β

K∑
j=1

wj

ϕ
′′

yy(∥xm−L
2 ŷj +

xm+L
2 − xk∥)

(Lŷj − L+ xm − xmŷj)β−1
.

where K denotes the number of Gaussian points, ŷj , (j = 1, · · · ,K) are Gaussian
points, wj , (j = 1, · · · ,K) are corresponding integration coefficients.

Substituting (7) into (6) and combining with the initial and boundary conditions,
a full discrete scheme is obtained as:

A1λ⃗(tn+1) = A2λ⃗(tn) + s⃗(tn). (8)

Remarks: as is show in [29], the invertible of matrix A1 is observable,

A1 =


ϕ(x1, x1) ϕ(x1, x2) · · · ϕ(x1, xM )
ϕ(x2, x1) ϕ(x2, x2) · · · ϕ(x2, xM )

...
...

...
...

ϕ(xM , xM ) ϕ(xM , x2) · · · ϕ(xM , xM )



A2 =


0 0 · · · 0

f(x2, x1, tn, β) f(x2, x2, tn, β) · · · f(x2, xM , tn, β)
...

...
...

...
f(xM−1, x1, tn, β) f(xM−1, x2, tn, β) · · · f(xM−1, xM , tn, β)

0 0 · · · 0


f(xm, xk, tn, β)

= ϕ(∥xm − xk∥) + dnm∆t

 1
Γ(2−β)

∫ xm

L

ϕ
′′
ξξ(∥ξ−xk∥)
(xm−ξ)β−1 dξ + ϕ(∥L−xk∥)(xm−L)−β

Γ(1−β)

+
ϕ
′
ξ(∥ξ−xk∥)|ξ=L(xm−L)1−β

Γ(2−β)

 .

s⃗(tn) =
(
ϖ1(tn) sn2∆t · · · snM−1∆t ϖ2(tn)

)T
.

2.2. Algorithm. When RBF meshless method is engaged in solving spatial frac-
tional differential equations, (8) needs to be solved. We divide the process to solve
(8) into seven steps subjectively.
Step1: set parameters ∆t, ε, L, R and {xk}Mk=1 ∈ [L,R].
Step2: aggregate A1.

Step3: implement RBF interpolation, get λ⃗(t0) in conjunction with initial and
boundary conditions.
Step4: for k = 1, · · · ,M , compute (7) through Gaussian formula.
Step5: for i = 2, · · · , N , aggregate A2 and s⃗.

Step6: iterate (8), get λ⃗(i)(i = 2, · · · ,M).
Step7: compute U = A1λ.
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This algorithm deal with spatial fractional differential equations with left sided
Riemann-Liouville definition, when facing another definition of fractional derivative,
the algorithm still work after adjusting A2.

2.3. Local truncation errors, stability and convergence. In RBF interpola-
tion, if node sets X1,X2 hold same density and obey quasi uniformed distribution,
the errors of RBF interpolation in the two sets have same order [29].

For simplicity, we set that xk are uniform distribution nodes in [L,R] and donate
h = xk+1 − xk, k = 1, · · · ,M − 1. Combining (6) with (8),

u(xm, tn+1)− u(xm, tn)

∆t
= snm +

1

∆t
A3(m, :)A−1

1 (:, n)u(xm, tn). (9)

Where A3(2 : M − 1, :) = A2(2 : M − 1, :) − A1(2 : M − 1, :) , A3(1, :) = A2(1, :
) , A3(M, :) = A2(M, :).

According to RBF theory[29],
M∑
i=1

λi(tn)ϕ
′′(∥xm − xi∥) = u(x, tn)|x=xm +O(hκ−2),

κ is measurement of RBF smoothness. Thus

| 1
∆tA3(m, :)A−1

1 (:, n)u(xm, tn)− dnm
∂βu(x,tn)

∂xβ |x=xm |
= dnm| 1

Γ(2−β)

∫ xm

L
O(hκ−2)
(x−ξ)β−1 dξ|

= dnm| 1
Γ(2−β)

∫ xm−L

0
O(hκ−2)
zβ−1 dz|

= dnm
(xm−L)2−β

Γ(3−β) O(hκ−2)

= Cn
mO(hκ−2).

(10)

Where dnm
(xm−L)2−β

Γ(3−β) = Cn
m.

According to Taylor expansion,

u(xm, tn+1)− u(xm, tn)

∆t
= ut(x, t)|x=xm,t=tn +O(∆t).

In summary, the truncation error of (8) can be deduced as

Rlocal = O(hκ−2 +∆t).

So, the proposed scheme is a consistent scheme. From (9),

u(xm, tn+1) = u(xm, tn) + ∆t
dn
m

hβ

m∑
k=0

gku(xm−k+1, tn) + ∆tsnm

+(A3(m, :)A1(:, n)u(xm, tn)−∆t
dn
m

hβ

m∑
k=0

gku(xm−k+1, tn))

= u(xm, tn) + ∆t
dn
m

hβ

m∑
k=0

gku(xm−k+1, tn) + ∆tsnm

+∆t( 1
∆tA3(m, :)A1(:, n)u(xm, tn)− dnm

∂βu(x,tn)
∂x |x=xm)

+∆t(dnm
∂βu(x,tn)

∂x |x=xm − dn
m

hβ

m∑
k=0

gku(xm−k+1, tn)).

(11)

Meerschaert and Tadjeran[30] deduced the truncation error when they using Shift-
ed Grünwald formula to discrete left sided Riemann-Liouville fractional derivative.

∂βu(x, tn)

∂xβ
|x=xm =

1

hβ

m∑
k=0

gku(xm−k+1, tn) +O(h). (12)
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Where, g0 = 1, gk = (−1)k Γ(β+1)
Γ(k+1)Γ(β−k+1) , k = 1, 2, · · · .

Substituting (12) and (10) into (11), we get u(xm, tn+1) = u(xm, tn) + ∆t
dn
m

hβ

m∑
k=0

gku(xm−k+1, tn) + ∆tsnm

+∆tCn
mO(hκ−2) + ∆tdnmO(h).

(13)

For (9), it is essential that the radius of I+A3A
−1
1 should fit λ(I+A3A

−1
1 ) ≤ 1.

Meerschaert and Tadjeran[31] analysed as follows,

usg(xm, tn+1) = usg(xm, tn) + ∆t
dnm
hβ

m∑
k=0

gkusg(xm−k+1, tn) + ∆tsnm. (14)

and gave its stability conditions as ∆t
hβ ≤ 1

βdmax
, where dmax = maxx,t|d(x, t)|.

Obviously, the stability of (13) is also ∆t
hβ ≤ 1

βdmax
. So when λ(I + A3A

−1
1 ) ≤ 1

and ∆t
hβ ≤ 1

βdmax
, equation (8) is stable.

And now, let Rn
m = u(xm, tn)− usg(xm, tn), n = 1, 2, · · · , from (13)-(14), we get

Rn+1
m = Rn

m +∆t
dnm
hβ

m∑
k=0

gkR
n
m−k+1 +∆tCn

mO(hκ−2) + ∆tdnmO(h). (15)

(15) can be rewritten as matrix form:

R⃗n+1 = BR⃗n +∆tR⃗e
n
.

Where R⃗n+1 = [Rn+1
1 Rn+1

2 · · · Rn+1
M ]T , R⃗e

n
= [Ren1 Ren2 · · · RenM−1 RenM ]T ,

Renm = Cn
mO(hκ−2) + dnmO(h), according to boundary conditions Ren1 = 0, RenM =

0, and ∆t
hβ ≤ 1

βdmax
, the stable conditions of (13) means ∥B∥∞ ≤ 1.

Thus ∥R⃗n+1∥∞ ≤ ∥B∥∞∥R⃗n∥∞ + ∆t∥R⃗e
n
∥∞, through initial conditions we

knows that R⃗1 = 0⃗.
So,

∥R⃗n+1∥∞ ≤ ∥B∥∞∥R⃗n∥∞ +∆t(CmaxO(hκ−2) + dmaxO(h))

≤ ∥B∥2∞∥R⃗n−1∥∞ + ∥B∥∞∆t(CmaxO(hκ−2) + dmaxO(h))+
∆t(CmaxO(hκ−2) + dmaxO(h))

≤ ∥B∥2∞∥R⃗n−1∥∞ + 2∆t(CmaxO(hκ−2) + dmaxO(h))

≤ ∥B∥n∞∥R⃗1∥∞ + n∆t(CmaxO(hκ−2) + dmaxO(h)).

In consideration of n∆t ≤ T , ∥R⃗n+1∥∞ ≤ T (CmaxO(hκ−2)+ dmaxO(h)). There-
fore, the error between shifted Grünwald formula and RBF meshless method is
bounded by T (CmaxO(hκ−2) + dmaxO(h)).

3. Numerical experiments

In(1), when L = 0, R = 1, β = 1.8, d(x, t) = Γ(5−β)xβ

24 , s(x, t) = −2e−tx4, initial

conditions and boundary conditions are u(x, 0) = x4, 0 < x < 1, u(0, t) = 0 and
u(1, t) = e−t, its analytic solution is u(x, t) = e−tx4.

MQ function ϕ(r) =
√
r2 + ε2 is engaged as RBF, 40 points Gaussian-Legendre

formula is used to compute (7), {xi}Ni=1 are uniformly distributed in [0,L]. There is
no general rule to choose shape parameter ε in MQ, so the choice of shape parameter
in each case is by manual trial. After implementing the proposed method on the
equation, some figures and tables of numerical results are displayed. Figure 1 shows
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Figure 1. Curve of numerical solution when T = 1,∆t =
0.01, h = 1/30, ε = 0.015
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Figure 2. Curve of absolute error when T = 1,∆t = 0.01, h =
1/30, ε = 0.009

the curve of numerical solution when T = 1, ∆t = 0.01, h = 1/30, ε = 0.015.
Figure 2 shows the curve of absolute errors when T = 1, ∆t = 0.01, h = 1/30, ε =
0.009. Figure 3 shows the curve of absolute errors when T = 2, ∆t = 0.01, h =
1/30, ε = 0.009. Figure 4 shows the comparision between numerical solution and
analytic solution when T = 1, ∆t = 0.01, ε = 0.015 at t = 0.25, 0.50, 0.75, 1.00.
Figure 5 shows the comparision between numerical solution and analytic solution
when T = 1, ∆t = 0.01, ε = 0.015 at x = 0.25, 0.50, 0.75. Table 1 matches
our theoretical analysis completely, all the ∆t and h satisfies ∆t

hβ ≤ 1
βdmax

and the

maximum error behavior is observed amostly as expected holding at least the same
order as shifted Grünwald formula.

4. Conclusion

A truly meshless method is proposed to solve spatial fractional differential equa-
tions. This method is an unifying method for spatial fractional differential equa-
tions, no matter which kind of definition of fractional derivative it contains. For
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Figure 3. Curve of absolute error when T = 2,∆t = 0.01, h =
1/30, ε = 0.009
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(a) t = 0.25, 0.50, 0.75, 1.00
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(b) x = 0.25, 0.50, 0.75

Figure 4. Comparision between numerical solutions and analytic
solutions when T = 1,∆t = 0.01, h = 1/20, ε = 0.015 at (a) t =
0.25, 0.50, 0.75, 1.00, (b) x = 0.25, 0.50, 0.75

Table 1. When T = 1,the relation among space step,time step,
shape parameter,radius of iterative matrix, maximum absolute er-
ror and convergence rate.

space step time step ∆t
hβ

1
βdmax

ε λ(I +A3A
−1
1 ) maximum absolute error convergence rate

h=1/20 0.01 2.197 5.500 0.015 1 8.872e-3

h=1/25 0.01× 20
25

2.627 5.500 0.012 1 6.640e-3 1.30

h=1/30 0.01× 20
30

3.039 5.500 0.009 1 5.579e-3 0.95

h=1/35 0.01× 20
35

3.438 5.500 0.007 1 4.009e-3 2.14

h=1/40 0.01× 20
40

3.825 5.500 0.005 1 2.985e-3 2.21

the characters of RBF interpolation, this method can be easily extended to high
dimensional cases. This method can only be used in linear equations now, in further
work, we want to investigate the behavior of this method in nonlinear cases.
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