
Journal of Fractional Calculus and Applications

Vol. 7(1) Jan. 2016, pp. 176-188.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

LYAPUNOV TYPE INEQUALITIES FOR FRACTIONAL

STURM-LIOUVILLE PROBLEMS AND FRACTIONAL

HAMILTONIAN SYSTEMS AND APPLICATIONS
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Abstract. In this paper, we will introduce some new results about Lyapunov
type inequalities by studying the given fractional order Sturm-Liouville prob-

lems and fractional order Hamiltonian systems. We state and prove Lyapunov
type inequalities for fractional S-L problems equipped by fractional Riemann-
Liouville derivatives. In this paper for establishing fractional Hamiltonian
systems we will apply recently introduced so called fractional Conformable

operators. At the end as applications of these inequalities, some interesting
spectral properties for fractional order S-L problems together with stability of
fractional Hamiltonian systems will be concluded.
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1. introduction

We begin with general description of main problems. A. M. Lyapunov during
his study of general theory of stability of motion in 1892, introduced the stability
criterion for second order differential equations, that in the case of periodic motion
can be stated as follows:
The second order differential equation

y
′′
+ p(t)y = 0, t ∈ R, (1)

with ω−periodic coefficient p(t) is stable in the sense that, all solutions of ODE (1)
are bounded as t → ±∞, provided that p(t) ̸≡ 0, p(t) > 0 for all t ∈ R and

ω

∫ ω

0

p(t)dt ≤ 4. (2)

The counter inequality of (2) is to be called Lyapunov inequality. For more details
see [11],[12].
During the last decades, one can find considerable modifications of Lyapunov type
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inequalities related to ordinary differential equations such as stability and discon-
jugacy or oscillatory criterion for mentioned problems, while in the frame of theory
of fractional calculus we can only find a few elementary research works about this
inequalities. We are interested to give some new results about the Lyapunov type
inequalities of fractional differential equations. An interested reader can find some
recent studies about mentioned inequalities in [2],[4],[5],[8],[13]-[18].
G. Sh. Guseinov and B. Kaymkçalan, in [6] investigated the Lyapunov type in-
equalities for continuous linear Hamiltonian system x

′
(t) = a(t)x(t) + b(t)u(t),

t ∈ R,
u

′
(t) = −c(t)x(t)− a(t)u(t),

(3)

and proved that if (x, u) is a nontrivial solution of Hamiltonian system (3), such
that b(t) ≥ 0 on R and x(α) = 0 = x(β) and x(t) is not vanish identically zero on
[α, β], then the following Lyapunov type inequality satisfies∫ β

α

|a(t)|dt+

√∫ β

α

b(t)dt.

∫ β

α

c+(t)dt ≥ 2, (4)

where c+(t) = max{c(t), 0}. This investigation makes the main motivation of our
work.
Recently Rui A. C. Ferreira in [4], studied the fractional differential equation{

(aD
αy) (t) + q(t)y(t) = 0, α ∈ (1, 2], t ∈ (a, b),

y(a) = 0 = y(b),
(5)

where q : [a, b] → R is a continuous function. The author using Green function
technique obtained the following Lyapunov type inequality∫ b

a

|q(s)|ds > Γ(α)

(
4

b− a

)α−1

.

Let us now consider the following fractional higher order linear Hamiltonian system:

Dαy(t) = JH(t)y(t), t ∈ R,

where

Dαy(t) =

(
Dµv(t)

Dνu(t)

)
, J =

[
0 1
−1 0

]
, H(t) =

[
γ(t) α(t)
α(t) β(t)

]
.

Equivalently we consider the following system Dµu(t) = α(t)u(t) + β(t)v(t),
t ∈ R,

Dνv(t) = −γ(t)u(t)− α(t)v(t),
(6)

where µ, ν ∈ (n, n+ 1], n ∈ N ∪ {0},
α(t), β(t), γ(t) : Real-valued piece-wise continuous functions on R,
Dρ : Relevant fractional derivative of order ρ that will be defined later.

(7)

Before beginning the main results, we state some classic and modified definitions
and lemmas from fractional calculus.
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Definition 1.1. [10] The left and right sided Riemann-Liouville fractional integrals
of order ρ ≥ 0 for function f ∈ L1(a, b) are defined as below:

Iρ
a+(b−)f(t) =


Iρ
a+f(t) =

1

Γ(ρ)

∫ t

a

(t− s)ρ−1f(s)ds; ρ > 0,

Iρ
b−
f(t) =

1

Γ(ρ)

∫ b

t

(s− t)ρ−1f(s)ds; ρ > 0,

f(t) ; ρ = 0.

(8)

Definition 1.2. [10] The left and right sided Riemann-Liouville fractional deriva-
tives of order ρ ≥ 0 for function f ∈ L1(a, b) is defined by:

Dρ
a+(b−)f(t) =


Dρ

a+f(t) =
1

Γ(n− ρ)

(
dn

dtn

)∫ t

a

(t− s)n−ρ−1f(s)ds; ρ > 0,

Dρ
b−
f(t) =

(−1)n

Γ(n− ρ)

(
dn

dtn

)∫ b

t

(s− t)n−ρ−1f(s)ds; ρ > 0,

f(t) ; ρ = 0.
(9)

where n = [ρ] + 1.

Lemma 1.3.

Dρ
a+Iρ

a+u(t) = u(t), Iρ
a+Dρ

a+u(t) = u(t) +

n∑
k=1

ck(t− a)ρ−k,

Dρ
b−
Iρ
b−
u(t) = u(t), Iρ

b−
Dρ

b−
u(t) = u(t) +

n∑
k=1

dk(b− t)ρ−k,

(10)

such that ρ > 0, n = [ρ] + 1.

As we know, all of the fractional order operators based on Riemann−Liouville
operators do not satisfy in the so called Leibnitz rule. See [16]. But soon we will
need to use those fractional derivatives that retain the classic form of first order
Leibnitz rule for two functions u(t), v(t), that is

(Dρuv) (t) = (Dρu) (t).v(t) + u(t). (Dρv) (t).

More recently R. Khalil et al. and T. Abdeljawad in [1],[9], introduced new defini-
tions for fractional order operators by means of generalizing the limit approach of
integer order differentiation operators, that retain interestingly some of important
algebraic properties of fractional order differentiation. So we represent these so
called fractional Conformable operators as follows.

Definition 1.4. [1] The left and right sided fractional Conformable integrals of
order n < ρ ≤ n+ 1, n ∈ N ∪ {0}, for function f ∈ L1(a, b) are defined as below:

Iρf(t) =


Iρa+f(t) =

1

n!

∫ t

a

(t− s)n(s− a)α−n−1f(s)ds,

Iρb−f(t) =
1

n!

∫ b

t

(s− t)n(b− s)α−n−1f(s)ds.

(11)

Consequently the corresponding fractional operators are defined as follows.
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Definition 1.5. [1],[9] The left and right sided fractional Conformable derivatives
of order n < ρ ≤ n+1, n ∈ N∪{0}, for n−differentiable function f(t) on t ∈ (a, b)
is given by:

T ρf(t) =


T ρ
a+f(t) = lim

ϵ→0

f ([ρ]−1)(t+ ϵ(t− a)[ρ]−ρ)− f ([ρ]−1)(t)

ϵ
,

T ρ
b−
f(t) = lim

ϵ→0

(−1)n+1
{
f ([ρ]−1)(t+ ϵ(b− t)[ρ]−ρ)− f [ρ]−1(t)

}
ϵ

,

(12)
where [ρ] is the smallest integer greater than or equal to ρ.

Some of interesting properties of newly defined fractional operators that will
be needed in studying the fractional Hamiltonian systems are represented in the
following lemma.

Lemma 1.6. [1],[9] Fractional Conformable operators defined by (11),(12) have
the following properties:

(Q1)

Tα
a+Iαa+f(t) = f(t), Iαa+Tα

a+f(t) = f(t)−
n∑

k=0

f (k)(a)(t− a)k

k!
,

Tα
b−I

α
b−f(t) = f(t), Iαb−T

α
b−f(t) = f(t)−

n∑
k=0

(−1)kf (k)(b)(b− t)k

k!
,

(13)

provided that n < α ≤ n+ 1, n ∈ N ∪ {0} and f(t) is n−differentiable.
(Q2)

Tα(uv)(t) = (Tαu(t)) v(t) + u(t) (Tαv(t)) , (14)

where n < α ≤ n+ 1, n ∈ N ∪ {0} and u(t), v(t) are n−differentiable.
(Q3)

Tα(
u

v
)(t) =

(Tαu(t)) v(t)− u(t) (Tαv(t))

v2(t)
, (15)

such that n < α ≤ n + 1, n ∈ N ∪ {0} and u(t), v(t) are n−differentiable
and v(t) is nonzero for all t on its domain.

2. main results

The organization of this section is as follows:

Step 1. Representing the Lyapunov type inequality for a certain fractional order
Sturm-Liouville problem{
Dα

a+

(
p(t)u

′
(t)
)
+ q(t)u(t) = 0, 1 < α ≤ 2, t ∈ J = (a, b), b ̸= 0,

u(a) = u
′
(a) = 0, u(b) = 0.

(16)

Step 2. Obtaining the Lyapunov type inequality for the coupled left(right) sided
fractional Conformable Hamiltonian systems

T ν
a+u(t) = α(t)u(t) + β(t)v(t),

n < ν ≤ n+ 1, t ∈ R,
T ν
a+v(t) = −γ(t)u(t)− α(t)v(t),

(17)
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and
T ν
b−
u(t) = α(t)u(t) + β(t)v(t),

n < ν ≤ n+ 1, t ∈ R,
T ν
b−
v(t) = −γ(t)u(t)− α(t)v(t),

(18)

where ω(t) = (t− a)ω(t) and ω(t) = (b− t)ω(t).

Notation. Cp(J ,R) : Real valued piece-wise continuous functions on J .

Lemma 2.1. Assume that p(t), q(t) ∈ Cp(J ,R) and p(t) > 0, for t ∈ R. Then for
any nontrivial solution of the fractional S-L problem{

Dα
a+

(
p(t)u

′
(t)
)
+ q(t)u(t) = 0, 1 < α ≤ 2, t ∈ J = (a, b),

u(a) = u
′
(a) = 0 = u(b),

(19)

the following so called Lyapunov type inequality will be satisfied:∫ b

a

∫ b

a

∣∣∣ q(s)
p(w)

∣∣∣dsdw >
Γ(α)

2(b− a)α−1
. (20)

Proof.

Dα
a+

(
p(t)u

′
(t)
)
= −q(t)u(t).

Properties (10) for Riemann-Liouville fractional derivatives imply that

u
′
(t) = c1

(t− a)α−1

p(t)
+ c2

(t− a)α−2

p(t)
−
∫ t

a

(t− s)α−1

Γ(α)p(t)
q(s)u(s)ds.

So we have

u(t) = c3 + c1

∫ t

a

(w − a)α−1

p(w)
dw + c2

∫ t

a

(w − a)α−2

p(w)
dw

−
∫ t

a

∫ w

a

(w − s)α−1

Γ(α)p(w)
q(s)u(s)dsdw.

Now implementing the boundary conditions, we conclude that{
u(a) = 0 ⇒ c3 = 0,

u
′
(a) = 0 ⇒ c2 = 0.

Thus the fractional order S-L problem (19) reduces to the integral equation

u(t) = c1

∫ t

a

(w − a)α−1

p(w)
dw −

∫ t

a

∫ w

a

(w − s)α−1

Γ(α)p(w)
q(s)u(s)dsdw. (21)

Imposing the boundary condition u(b) = 0, we deduce that

c1 =
1

Γ(α)

∫ b

a

∫ w

a

(w − s)α−1

p(w)
q(s)u(s)dsdw∫ b

a

(w − a)α−1

p(w)
dw

. (22)
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Finally substitution c1 in (21), we find that

u(t)

=
1

Γ(α)

∫ b

a

(w − a)α−1

p(w)
dw

{∫ t

a

(w − a)α−1

p(w)
dw

∫ b

a

∫ w

a

(w − s)α−1

p(w)
q(s)u(s)dsdw

−
∫ b

a

(w − a)α−1

p(w)
dw

∫ t

a

∫ w

a

(w − s)α−1

p(w)
q(s)u(s)dsdw

}
.

(23)

Now we define a suitable Banach space that will be required in the sequel, as below:

(B, ∥.∥B) ,

{
B = C[a, b],
∥u∥B = sup

t∈[a,b]

|u(t)|, u ∈ B. (24)

It is easy to see that ∫ t

a

(w − a)α−1

p(w)
dw∫ b

a

(w − a)α−1

p(w)
dw

≤ 1.

Using triangular inequality and (23), imply that

|u(t)| ≤ 1

Γ(α)

{∫ t

a

∫ w

a

(w − s)α−1

p(w)
|q(s)u(s)|dsdw

+

∫ b

a

∫ w

a

(w − s)α−1

p(w)
|q(s)u(s)|dsdw

}
.

Taking sup-norm from both sides of the last inequality, implies that

∥u∥B < ∥u∥B
2(b− a)α−1

Γ(α)

∫ b

a

∫ b

a

∣∣∣ q(s)
p(w)

∣∣∣dsdw.
Equivalently ∫ b

a

∫ b

a

∣∣∣ q(s)
p(w)

∣∣∣dsdw >
Γ(α)

2(b− a)α−1
.

�

Remark 2.2. Taking p(t) ≡ 1, implies the corresponding Lyapunov inequality of
the form ∫ b

a

|q(s)|ds > Γ(α)

2(b− a)α
.

In what follows, we will study the fractional order Hamiltonian systems (17),(18)
equipped with the fractional Conformable derivatives, and we will try to represent
the corresponding Lyapunov type inequality for these systems.

Theorem 2.3. Assume that the fractional Conformable Hamiltonian systems (17),
(18) have a real solution (u, v) such that u(a) = u(b) = 0 and u is not identically
zero on [a, b]. Moreover, assume that β(t) ≥ 0 and

u(k)(a) = 0 = u(k)(b), k = 1, 2, ..., n, n ∈ N, n ≥ 1. (25)



182 KAZEM GHANBARI, YOUSEF GHOLAMI JFCA-2016/7(1)

Then the following Lyapunov type inequality holds∫ b

a

|α(t)|dt+

√∫ b

a

β(t)dt.

∫ b

a

γ+(t)dt ≥ 2
n!

(b− a)ν
, (26)

where γ+(t) = max{γ(t), 0}.

Proof. Let us recall once again the fractional Conformable left(right) sided Hamil-
tonian systems (17),(18) as follows, respectively{

T ν
a+u(t) = α(t)u(t) + β(t)v(t),

T ν
a+v(t) = −γ(t)u(t)− α(t)v(t),

(27)

and {
T ν
b−
u(t) = α(t)u(t) + β(t)v(t),

T ν
b−
v(t) = −γ(t)u(t)− α(t)v(t),

(28)

subjected to the conditions (7). Multiplying the first equation of (27) by v(t) and
second equation by u(t) and adding both equations and doing similar operations
on (28), imply that

T ν
a+(u(t)v(t)) = −γ(t)u2(t) + β(t)v2(t),

T ν
b−(u(t)v(t)) = −γ(t)u2(t) + β(t)v2(t).

(29)

Left and right Conformable integration of both sides of the (29) yields{
Iνa+ T ν

a+(u(t)v(t)) = Iνa+{−γ(t)u2(t) + β(t)v2(t)},
Iνb− T ν

b−
(u(t)v(t)) = Iνb−

{
−γ(t)u2(t) + β(t)v2(t)

}
.

(30)

Before continuing, let us describe the reason of defining ω, ω, ω ∈ {γ, β}. As one
can observe, independent from choosing order in fractional Conformable integrals,
the statement (s − a)ν−n−1 permanently has non-positive power. So increasing
the fractional order can not change the non-positivity of power of (s − a)ν−n−1.
Thereby for solving this difficulty without changing the order, one can multiply
(s − a)ν−n−1 by ω for obtain positive power. In this case (s − a)ν−n−1ω(s) will

be transformed to the (s − a)ν−nω(s). Thereafter we can find its non-zero upper
bound. We may find Similar result for fractional right sided Conformable integrals.
Now (13) together with assumptions (25) imply

u(t).v(t) =
1

n!

∫ t

a

(t− s)n(s− a)ν−n

{
− γ(s)u2(s) + β(s)v2(s)

}
ds,

u(t).v(t) =
1

n!

∫ b

t

(s− t)n(b− s)ν−n

{
− γ(s)u2(s) + β(s)v2(s)

}
ds.

(31)

Now substitution t by b in the first equation of (31) and t by a in second one and then
summing the resulting equations, one can see that subjected to u(a) = u(b) = 0,
we have∫ b

a

(b− s)n(s− a)ν−n + (b− s)ν−n(s− a)n

n!

{
− γ(s)u2(s) + β(s)v2(s)

}
ds = 0.

(32)

The equality (32) immediately yields

γ(s)u2(s) = β(s)v2(s). (33)
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On the other hand left sided fractional integrating of the first equation of (27)
together with right sided fractional integrating of the first equation of (28), imply
that

u(t) +
n∑

k=0

u(k)(a)

k!
(t− a)k =

∫ t

a

(t− s)n(s− a)ν−n

n!
{α(s)u(s) + β(s)v(s)}ds,

u(t) +

n∑
k=0

(−1)ku(k)(b)

k!
(b− t)k =

∫ b

t

(s− t)n(b− s)(ν−n)

n!
{α(s)u(s) + β(s)v(s)}ds.

(34)

According to the assumption (25), we have

|u(t)| ≤ (b− a)ν

n!

{∫ t

a

|α(s)||u(s)|ds+
∫ t

a

β(s)|v(s)|ds
}
,

|u(t)| ≤ (b− a)ν

n!

{∫ b

t

|α(s)||u(s)|ds+
∫ b

t

β(s)|v(s)|ds

}
.

(35)

Now adding both equations (35), we deduce that

2|u(t)| ≤ (b− a)ν

n!

{∫ b

a

|α(s)||u(s)|ds+
∫ b

a

β(s)|v(s)|ds

}
. (36)

Applying the Cauchy-Schwartz inequality and (33), we have;∫ b

a

β(t)|v(t)|dt ≤

√∫ b

a

β(t)dt.

√∫ b

a

β(t)v(t)2dt

=

√∫ b

a

β(t)dt.

√∫ b

a

γ(t)u(t)2dt

≤

√∫ b

a

β(t)dt.

√∫ b

a

γ+(t)u(t)2dt.

(37)

Therefore we conclude from (36) that

2∥u(t)∥ ≤ (b− a)ν

n!

{∫ b

a

|α(s)|∥u(s)∥ds+

√∫ b

a

β(t)dt.

√∫ b

a

γ+(t)∥u(t)∥2dt

}
,

(38)
where ∥.∥ is the standard sup-norm. Nontrivial nature of u(t) implies that∫ b

a

|α(t)|dt+

√∫ b

a

β(t)dt.

∫ b

a

γ+(t)dt ≥ 2
n!

(b− a)ν
. (39)

This completes the proof. �

3. applications

As we know, there is no solid spectral theory for the fractional Sturm-Liouville
problems. However Lyapunov type inequalities of fractional Sturm-Liouville prob-
lems give us many useful information about spectral properties of such problems.
As an application for Lyapunov inequality (20), we represent the spreading of real
eigenvalues of fractional S-L problem (19) or equivalently non-existence results for
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real zeros of so called generalized Mittag-Leffler functions. To this aim, first we
define the (generalized) Mittag-Leffler functions as follows.

Definition 3.1. The generalized Mittag-Leffler function is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C, (40)

which is an analytic function on the whole complex plane.

Remark 3.2. For β = 1, generalized Mittag-Leffler function Eα,β(z) reduces to
the standard Mittag-Leffler function

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C. (41)

Now Let us for simplicity consider the following substitutions for real valued
continuous functions p(t), q(t) in fractional S-L problem (19) as follows:

p(t) = bα+1, q(t) = −λ.

So we have
Dα+1

a+ u(t)− λb−(α+1)u(t) = 0, α ∈ (1, 2], t ∈ (a, b), b ̸= 0,

u(a) = u
′
(a) = u(b) = 0.

(42)

According to [[10], Chapter 5, §5.2], the fundamental solutions of Fractional Sturm
Liouville Problem (FSLP) (42) are as follows:

u1(t) = tαEα+1,α+1

(
λ

(
t

b

)α+1
)
,

u2(t) = tα−1Eα+1,α

(
λ

(
t

b

)α+1
)
,

u3(t) = tα−2Eα+1,α−1

(
λ

(
t

b

)α+1
)
.

Thus implementing the boundary condition u1(b) = 0, we conclude that real eigen-
values of FSLP (42) are real solutions of

Eα+1,α+1(λ) = 0. (43)

Therefore using Lemma 2.1, we deduce that λ ∈ R is an eigenvalue of FSLP (42)
or equivalently λ ∈ R is a zero of (43), provided that

|λ| > Γ(α)

2

bα+1

(b− a)α+1
. (44)

So we can represent the following non-existence result for real eigenvalues of F(S-
L)P (42).

Theorem 3.3. Assume that 2 < θ ≤ 3. Then the generalized Mittag-Leffler func-
tion Eθ,θ(z) has no real zeros provided that

|z| ≤ Γ(θ − 1)

2

bθ

(b− a)θ
.
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Remark 3.4. According to the Theorem 3.3, the FSLP (42) has no positive eigen-
value in (

0,
Γ(θ − 1)

2

bθ

(b− a)θ

]
.

As we stated in the introductory discussions, the Lyapunov type inequalities
prepare an effective tool for fulfilment of stability in differential equations such
as fractional Sturm-Liouville problems and fractional Hamiltonian systems. In
the sequel as an another application for such inequalities we will obtain stability
criterion for fractional Hamiltonian systems.

Definition 3.5. Fractional Hamiltonian system (6) is

(D1) stable if all solutions are bounded on R.
(D2) conditionally stable if there exist a nontrivial solution which is bounded on

R.
(D3) unstable if all nontrivial solutions are unbounded on R.

Theorem 3.6. Consider the linear fractional Hamiltonian systems (17),(18) where
α(t), β(t), γ(t) are real valued piece-wise continuous functions defined on R and
periodic with a period ω > 0, that is

α(t+ ω) = α(t), β(t+ ω) = β(t), γ(t+ ω) = γ(t), t ∈ R. (45)

If the following conditions hold

(i) β(t) > 0, γ(t) ≥ 0, β(t)γ(t)− α2(t) ≥ 0, t ∈ R. (46)

(ii) β(t)γ(t)− α2(t) ̸≡ 0. (47)

(iii) u(k)(a) = 0 = u(k)(b), k = 1, ..., n, (48)

(iv)

∫ ω

0

|α(t)|dt+

√∫ ω

0

β(t)dt.

∫ ω

0

γ+(t)dt <
2n!

ων
. (49)

then the fractional Hamiltonian systems (17),(18) are stable.

Proof. Assume that fractional Hamiltonian systems (17),(18) are unstable on R.
So by means of Floquet theory, there exist non zero real constant ξ with |ξ| ̸≡ 1
and nontrivial solution (u, v) of (17),(18) such that

u(t+ ω) = ξu(t), v(t+ ω) = ξv(t), t ∈ R, (50)

that implies the unboundedness of nontrivial solution (u, v). Details can be found
in [3],[7]. In order to apply the Theorem 2.3 we must prove that u(t) has at least
one zero in segment [0, ω]. Assume that u(t) has no zero in [0, ω]. Hence according
to (50), u(t) ̸≡ 0 for all t ∈ R.
Now multiplying the first equation of (27) by v and second one by u and then sub-
traction resulting equations and doing similar operations on the right Hamiltonian
system (28), we get

T ν
a+

(u
v

)
(t) =

γ(t)u2(t) + 2α(t)u(t)v(t) + β(t)v2(t)

v2(t)
, (51)

T ν
b−

(u
v

)
(t) =

γ(t)u2(t) + 2α(t)u(t)v(t) + β(t)v2(t)

v2(t)
. (52)
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Fractional left and right Conformable integrating of both sides of (51) and (52)
respectively, and using assumption (iii), imply that(u

v

)
(t)−

(u
v

)
(a)

=

∫ t

a

(t− s)n(s− a)ν−n

n!

{
γ(s)u2(s) + 2α(s)u(s)v(s) + β(s)v2(s)

v2(s)

}
ds,(u

v

)
(t)−

(u
v

)
(b)

=

∫ b

t

(s− t)n(b− s)ν−n

n!

{
γ(s)u2(s) + 2α(s)u(s)v(s) + β(s)v2(s)

v2(s)

}
ds.

(53)

If we substitute t by a + ω in first equation of (53) and t by a and b by a + ω in
second one, (50) ensures that(u

v

)
(a+ ω)−

(u
v

)
(a) =

(
ξu

ξv

)
(a)−

(u
v

)
(a) = 0. (54)

Consequently we have

0 =

∫ a+ω

a

(a+ ω − s)n(s− a)ν−n + (a+ ω − s)ν−n(s− a)n

n!
×

×
{
γ(s)u2(s) + 2α(s)u(s)v(s) + β(s)v2(s)

v2(s)

}
ds.

(55)

Therefore it is clear that

γ(s)u2(s) + 2α(s)u(s)v(s) + β(s)v2(s) = 0. (56)

On the other hand we know that

γ(s)u2(s) + 2α(s)u(s)v(s) + β(s)v2(s)

=
1

β(t)

{
(α(t)u(t) + β(t)v(t))2 + (β(t)γ(t)− α2(t))u2(t)

}
.

So according to the assumptions (i),(ii), equality (56) could not be true, since (u, v)
is nontrivial. Hence u(t) has at least two zeros, one zero a in [0, ω] and one another
in a + ω. Also it is not identically zero on [a, a + ω]. Now applying Theorem 2.3
and taking b = a+ ω, we conclude that∫ a+ω

a

|α(t)|dt+

√∫ a+ω

a

β(t)dt.

∫ a+ω

a

γ+(t)dt ≥ 2
n!

ων
. (57)

It is clear that ∫ t0+ω

t0

f(t)dt =

∫ ω

0

f(t)dt, t0 ∈ R.

So (57) is equivalent to the following Lyapunov type inequality∫ ω

0

|α(t)|dt+

√∫ ω

0

β(t)dt.

∫ ω

0

γ+(t)dt ≥ 2
n!

ων
, (58)

that contradicts with assumption (iv). Thus has been proved that the fractional
Hamiltonian systems (17),(18) are stable on R. �
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4. concluding remarks

In this paper we studied the fractional order Sturm-Liouville problems and frac-
tional linear Hamiltonian systems for obtaining the corresponding Lyapunov type
inequalities. Since the standard fractional operators do not preserve the first order
Leibnitz rule, so we could not apply these operators for studying the fractional or-
der Hamiltonian systems. That is why we began our research process intentionally
with Riemann-Liouville fractional operators and as a result of necessity of using
different class of fractional order operators from viewpoint of their algebraic prop-
erties, we applied fractional Conformable operators for Hamiltonian systems and
successfully refined fractional order stability result corresponding to ordinary one
described in [6].
At the end, we point out that we used the technique ω(t) = (t − a)ω(t) and
ω(t) = (b− t)ω(t) in fractional Conformable Hamiltonian systems (17),(18) only for
keeping the boundedness of appearing integral operators.
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