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A FRACTIONAL TRAPEZOIDAL RULE TYPE DIFFERENCE

SCHEME FOR FRACTIONAL ORDER

INTEGRO-DIFFERENTIAL EQUATION

HONGBIN CHEN, SIQING GAN, DA XU

Abstract. A fractional trapezoidal rule type difference scheme for fractional
order integro-differential equation is considered. The equation is discretized

in time by means of a method based on the trapezoidal rule: while the time
derivative is approximated by the standard trapezoidal rule, the integral term
is discretized by means of a fractional quadrature rule constructed again from
the trapezoidal rule. The solvability, stability and L2-norm convergence are

proved. The convergence order is second order both in temporal and spatial
directions. Furthermore, a spatial compact scheme, based on the fractional
trapezoidal rule type difference scheme, is also proposed and the similar results
are derived. The convergence order is second for time and fourth for space.

Preliminary numerical experiment confirms our theoretical results.

1. Introduction

Consider a fractional trapezoidal rule (FTR) type difference scheme for the frac-
tional order integro-differential equation [1, 3, 5, 11, 16, 17, 24]

ut(x, t)− I(α−1)uxx(x, t) = f(x, t), 0 < x < L, 0 < t ≤ T, (1.1)

where the α-th integral I(α)φ(t) is defined by the Riemann-Liouville operator (see
[18]) as

I(α)φ(t) = 1
Γ(α)

∫ t

0
(t− s)α−1φ(s)ds, t > 0.

for 1 < α < 2, with the boundary conditions

u(0, t) = u(L, t) = 0, 0 < t ≤ T, (1.2)

and the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ L. (1.3)

Equation (1.1) can be found in the modelling of wave propagation involving vis-
coelastic forces, heat conduction in materials with memory [7, 8, 18].

2010 Mathematics Subject Classification. 65M60, 45K05, 65D32.
Key words and phrases. fractional order integro-differential equation, fractional trapezoidal

rule, fractional quadrature rule, finite difference scheme, stability, convergence, compact difference

scheme, numerical experiment.
Submitted Jul. 12, 2015.

133



134 HONGBIN CHEN, SIQING GAN, DA XU JFCA-2016/7(1)

Currently, various algorithms are designed for the integro-differential equations
of fractional order. Chen, Thomee and Wahlbin [1] used backward Euler scheme in
time, piecewise linear finite element method in space, the integral term by means
of product integration, and gave the regularity and error boundness of the solu-
tion. Mclean, Thomee [16] employed backward Euler, Crank-Nicolson and second
order BDF scheme, Galerkin finite element method for spatial variables and gave
the regularity, stability and error estimate. Xu [25] considered backward Euler and
Crank-Nicolson scheme, with one and second order convolution quadrature to the
integral term, respectively, and drove long time error boundness with weights. Lin
and Xu [10] proposed an effective numerical method based on a finite difference
scheme in time and Legendre spectral methods in space. Many researchers devel-
oped finite difference methods for it, e.g., It was analyzed by Lopez-Marcos [11],
Tang [24] and Chen [2], using a backward-Euler scheme, a Crank-Nicolson scheme
and a second order backward differentiation formula (BDF) scheme, respectively.
The stability and convergence are obtained. Sun and Wu [20] derived a fully dis-
crete difference scheme for the fractional wave equation and proved the difference
scheme is convergent in maximum norm. Zhang, Sun and Wu [22] constructed and
analyzed the Crank-Nicolson-type difference scheme for the subdiffusion equation
with a Riemann-Liouville fractional derivative. Chen et al. [3], Zhang et al. [22, 23]
concentrated on the compact difference scheme for promoting the spatial accuracy.
The advantage of the compact difference scheme is high accuracy in spatial direction
only and the coefficient matrix of the linear system of equations of the unknowns
is tridiagonal and can be easily solved by the Thomas algorithm.

The main purpose of this paper is to construct a fractional trapezoidal rule type
difference scheme for the fractional order integro-differential equations. The equa-
tions are discretized in time by means of a method based on the trapezoidal rule:
while the time derivative is approximated by the standard trapezoidal rule, the in-
tegral term is discreted by means of a fractional quadrature rule constructed again
from the trapezoidal rule. The solvability, stability and L2-norm convergence are
proved. The convergence order is second order both in temporal and spatial direc-
tions. Furthermore, a spatial compact scheme, based on the fractional trapezoidal
rule type difference scheme, is also proposed and the similar results are derived.
The convergence order is second for time and fourth for space.

An overview of the paper follows. In section 2, the FTR type difference scheme
is derived. Section 3 is devoted to the analysis of the unique solvability, stability
and L2−norm convergence of the scheme. The compact difference scheme and the
unique solvability, stability and L2−norm convergence are presented in Section 4.
In section 5, we will give a numerical example that is in total agreement with our
analysis. The article ends with a brief conclusions section.

2. Derivation of the difference scheme

For the finite difference approximation, let J and N be two positive integers,
h = L/J and k = T/N . The domain [0, L] × (0, T ] is covered by Ωh × Ωk, where
Ωh = {xj |xj = jh, 0 ≤ j ≤ J} and Ωk = {tn|tn = nk, 1 ≤ n ≤ N}. In addition,
denote tn− 1

2
= (n− 1

2 )k.
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For any grid function w = {wk
j |0 ≤ j ≤ J, 1 ≤ n ≤ N} defined on Ωh × Ωk, let

us introduce the following notations:

δxw
n
j− 1

2

= 1
h (w

n
j − wn

j−1), δ2xw
n
j = 1

h (δxw
n
j+ 1

2

− δxw
n
j− 1

2

),

w
n− 1

2
j = 1

2 (w
n
j + wn−1

j ), δtw
n− 1

2
j = 1

k (w
n
j − wn−1

j ).
(2.1)

To approximate the continuous convolution integral I(α−1)φ(tn), we will intro-
duce the following fractional quadrature rule (FQR) [5, 9, 12, 13]

qn(φ) = kα
n∑

p=0
βpφ

n−p + ρn0φ
0, (2.2)

where the quadrature weights βp are determined by their generating power series

K[δ(z)] = [δ(z)]1−α = [12
1+z
1−z ]

α−1 =
∞∑
p=0

βpz
p. (2.3)

Here K(s) denotes the Laplace transform of the convolution kernel and δ(z) is a
rational function. For concreteness, in this paper we consider the trapezoidal rule,
for which

δ(z) = 2(1−z)
1+z . (2.4)

To approximate the integral formally to second order and we take the correction
quadrature weights ρn0 so that the quadrature formula becomes exact for constant
polynomial, namely

kα
n∑

p=0
βp + ρn0 = 1

Γ(α−1)

∫ tn
0

(tn − s)α−2ds = 1
Γ(α) t

α−1
n ,

that is

kα
n∑

p=0
βp + ρn0 = 1

Γ(α) t
α−1
n . (2.5)

We will give the quadrature error of E(φ)(tn) = I(α−1)φ(tn) − qn(φ), where
qn(φ) is defined in (2.2).

Lemma 2.1 [5]. Let φ be continuous and such that φtt ∈ Bδ(0, T ] for some
0 ≤ δ < 1, then there exists C = C(α, δ) such that

|E(φ)(tn)| ≤ C(tα−2
n |φt(0)|+ tα−δ−1

n |φtt|δ)k2, n ≥ 1,

where Bδ(0, T ] = {f ||f |δ = sup
0<t≤T

tδ|f(t)| < +∞}.

Using Taylor expansion with integral remainder, we have the following lemma.

Lemma 2.2 [22]. Suppose u(x, t) ∈ C4,2
x,t ([0, L]× (0, T ]). It holds that

∂2u
∂x2 (xj , tn) = δ2xU

n
j − h2

6

∫ 1

0
[∂

4u
∂x4 (xj + sh, tn) +

∂4u
∂x4 (xj − sh, tn)](1− s)3ds.

The boundness of (R1)
n
j = I(α−1)uxx(xj , tn)− qn(δ

2
xu

n
j ) will be given as follow.

Lemma 2.3. Suppose u(x, t) ∈ C4,2
x,t ([0, L]× (0, T ]), then it holds that

| (R1)
n
j |= |I(α−1)uxx(xj , tn)− qn(δ

2
xu

n
j )| ≤ C(h2 + k2), 1 ≤ n ≤ N.

Proof. Let

v(x, t) = 1
Γ(α−1)

∫ t

0
(t− s)α−2u(x, s)ds, V n

j = v(xj , tn).

Then

I(α−1) ∂2u
∂x2 = ∂2v

∂x2 .
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Utilizing Taylor expansion with integral remainder, we have

∂2v
∂x2 (xj , tn) = δ2xV

n
j − h2

6

∫ 1

0
[ ∂

4v
∂x4 (xj + sh, tn) +

∂4v
∂x4 (xj − sh, tn)](1− s)3ds.

From Lemma 2.2 and triangle inequality, we have

| (R1)
n
j |= |I(α−1)uxx(xj , tn)− qn(δ

2
xu

n
j )|

= |I(α−1)uxx(xj , tn)− qn(uxx(xj , ·)) + qn(uxx(xj , ·))− qn(δ
2
xu

n
j )|

≤ |I(α−1)uxx(xj , tn)− qn(uxx(xj , ·))|+ |qn(uxx(xj , ·))− qn(δ
2
xu

n
j )|

≤ qn(1)
h2

6 |
∫ 1

0
[∂

4u
∂x4 (xj + sh, tn) +

∂4u
∂x4 (xj − sh, tn)](1− s)3ds|

+C(tα−2
n |uxxt(0)|+ tα−δ−1

n |uxxtt|δ)k2.

We finish the proof.

Lemma 2.4 [22]. Let y ∈ C3[tn−1, tn]. It holds that

1
2 [y

′(tn) + y′(tn−1)]− 1
k [y(tn)− y(tn−1)]

= k2

16

∫ 1

0
[y(3)(tn− 1

2
+ sk

2 ) + y(3)(tn− 1
2
− sk

2 )](1− s2)ds.

Define the grid function

Un
j = u(xj , tn), 0 ≤ j ≤ J, 0 ≤ n ≤ N.

We now derive the fractional trapezoidal rule type difference scheme for the
problem (1.1)-(1.3).

Considering the equation (1.1) at the point (xj , tn)

ut(xj , tn)− I(α−1)uxx(xj , tn) = f(xj , tn), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N. (2.6)

Then it holds
1
2 [ut(xj , tn) + ut(xj , tn−1)]− 1

2 [I
(α−1)uxx(xj , tn) + I(α−1)uxx(xj , tn−1)]

= 1
2 [f(xj , tn) + f(xj , tn−1)], 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

(2.7)

It follows from Lemma 2.3 and Lemma 2.4 that
1
2 [I

(α−1)uxx(xj , tn) + I(α−1)uxx(xj , tn−1)] =
1
2 [qn(δ

2
xUj) + qn−1(δ

2
xUj)]

+1
2 [(R1)

n
j + (R1)

n−1
j ].

(2.8)

and
1
2 [ut(xj , tn) + ut(xj , tn−1)] = δtU

n− 1
2

j + (R2)
n− 1

2
j , (2.9)

where

(R2)
n− 1

2
j = k2

16

∫ 1

0
[∂

3u
∂t3 (xj , tn− 1

2
+ sk

2 ) + ∂3u
∂t3 (xj , tn− 1

2
− sk

2 )](1− s2)ds.

Using the notations

U
1
2
j = 1

2U
1
j , ρn = 1

2 [ρn0 + ρn−1,0], 1 ≤ n ≤ N.

We have
1
2 [qn(δ

2
xUj) + qn−1(δ

2
xUj)]

= 1
2 [k

α
n∑

p=0
βpδ

2
xU

n−p
j + ρn0δ

2
xU

0
j + kα

n−1∑
p=0

βpδ
2
xU

n−1−p
j + ρn−1,0δ

2
xU

0
j ]

= kα
n∑

p=0
βpδ

2
xU

n−p− 1
2

j + ρnδ
2
xU

0
j .

(2.10)
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Substituting (2.8)-(2.10) into (2.7), we have

δtU
n− 1

2
j − (kα

n∑
p=0

βpδ
2
xU

n−p− 1
2

j + ρnδ
2
xU

0
j ) = f

n− 1
2

j +R
n− 1

2
j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,
(2.11)

where f
n− 1

2
j = 1

2 [f(xj , tn) + f(xj , tn−1)] and

R
n− 1

2
j = (R1)

n− 1
2

j − (R2)
n− 1

2
j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N. (2.12)

Therefore, there exists a constant CR independent of h and k such that

|Rn− 1
2

j | ≤ CR(k
2 + h2), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N. (2.13)

In addition, the initial and boundary value conditions can be written as

Un
0 = Un

J = 0, 1 ≤ n ≤ N. (2.14)

U0
j = u0(xj), 0 ≤ j ≤ J. (2.15)

Omitting the small term in equation (2.11), and replacing the function Un
j with

its numerical approximation un
j , we get the following difference scheme

δtu
n− 1

2
j − (kα

n∑
p=0

βpδ
2
xu

n−p− 1
2

j + ρnδ
2
xu

0
j ) = f

n− 1
2

j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

(2.16)

un
0 = un

J = 0, 1 ≤ n ≤ N. (2.17)

u0
j = u0(xj), 0 ≤ j ≤ J. (2.18)

3. Analysis of the difference scheme

3.1. Solvability

Let r = kα+1

h2 β0. The difference scheme (2.16)-(2.18) can be written as the
following matrix form

Aun = un−1 + r
2Bun−1 + kα+1

h2

n∑
p=1

βpBun−p− 1
2 + k

h2 ρnBu0 + kfn−
1
2 , 1 ≤ n ≤ N,

(3.1)
where

A =


1 + r −r/2
−r/2 1 + r −r/2

. . .
. . .

. . .

−r/2 1 + r −r/2
−r/2 1 + r


(J−1)×(J−1)

, (3.2)

B =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


(J−1)×(J−1)

(3.3)
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and

fn−
1
2 =



f
n− 1

2
1 + kα

2h2βnu
0
0 +

1
h2 ρnu

0
0

f
n− 1

2
2
...

f
n− 1

2

J−2

f
n− 1

2

J−1 + kα

2h2 βnu
0
J + 1

h2 ρnu
0
J


(J−1)×1

. (3.4)

It is easy to see that matrix A is tri-diagonal and strictly diagonally dominant,
thus un can be obtained from (3.1). This can be written in the following result.

Theorem 3.1. The difference scheme (2.16)-(2.18) is uniquely solvable.

3.2. Stability

We first introduce some notations and lemmas which will be used in the stability
and convergence analysis.

Let Vh = {v|v = (v0, v1, · · · , vJ), v0 = vJ = 0}. For any v, w ∈ Vh, we define the
discrete inner product, L2-norm, H1- semi-norm and maximum norm as follows:

(v, w) = h
J−1∑
j=1

vjwj , ∥v∥ =
√
(v, v) ,

∥δxv∥ =

√
h

J−1∑
j=0

(δxvj+ 1
2
)2 , ∥v∥∞ = max

0≤j≤J
|vj | .

Lemma 3.2. [2, 3]. For any grid function v ∈ Vh and 0 ≤ n,m ≤ N , then

|(δ2xvn, vm)| ≤ 4
h2 ∥vn∥∥vm∥.

Lemma 3.3. [2, 3, 11]. For any grid functions v, w ∈ Vh, we have

(δ2xv, w) = −
J−1∑
j=0

h(δxvj+ 1
2
)(δxwj+ 1

2
) = −(δxv, δxw).

We will give a general result on the nonnegative character of certain real qua-
dratic form with convolution structure. In order to treat more general choices, we
say that qn is β0-positive [16] if

QN (Φ) = k
N∑

n=0
qn(φ)φ

n ≥ −β0(φ
0)2, ∀ N ≥ 1, Φ = (φ0, · · · , φN )T .

Lemma 3.4. [11, 25]. If {a0, a1, · · · , an, · · · } is a real-valued sequence such

that â(z) =
∞∑

n=0
anz

n is analytic in D = {z ∈ C : |z| ≤ 1}, then for any positive

integer N and for any (U0, U1, · · · , UN ) ∈ RN+1,

N∑
n=0

(
n∑

p=0
apU

n−p)Un ≥ 0, (3.5)

if and only if
ℜâ(z) ≥ 0, for z ∈ D.

where ℜ denotes the real part of a complex number.

Lemma 3.5. We have ℜ[δ(z)] = ℜ[ 2(1−z)
1+z ] > 0, when |z| ≤ 1, z ̸= 1.

Proof: With z = ξ + iη, we have, for ξ2 + η2 ≤ 1, ξ ̸= 1,

ℜ[δ(z)] = ℜ[21−ξ−iη
1+ξ+iη ] = 2 1−ξ2−η2

(1+ξ)2+η2 > 0. (3.6)
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It is easy to know the convolution kernel β(t) = 1
Γ(α−1) t

α−2 is positive type,

viz. ℜK[β(s)] ≥ 0, when ℜ(s) ≥ 0. From Lemma 3.5, we have, for |z| < 1,

ℜK[β( 2(1−z)
1+z )] = ℜ( 2(1−z)

1+z ) > 0, the generating function (2.3) satisfies the condi-
tions of Lemma 3.4.

We now prove that the difference scheme (2.16)-(2.18) is stable to the initial
value and the inhomogeneous term.

Theorem 3.6. Suppose {un
j |0 ≤ j ≤ J, 1 ≤ n ≤ N} is the solution of the

difference scheme (2.16)-(2.18), then it holds that

∥un∥ ≤ C(T )∥u0∥+ 2
n∑

l=1

k∥f l− 1
2 ∥. (3.7)

Proof. Taking the inner product of (2.16) with 2un− 1
2 , we have

2(δtu
n− 1

2 , un− 1
2 ) = 2kα

n∑
p=0

βp(δ
2
xu

n−p− 1
2 , un− 1

2 )

+2ρn(δ
2
xu

0, un− 1
2 ) + 2(fn− 1

2 , un− 1
2 ), 1 ≤ n ≤ N.

(3.8)

We easily obtain

2(δtu
n− 1

2 , un− 1
2 ) = 1

k (∥u
n∥2 − ∥un−1∥2). (3.9)

When N ≥ 1, we have

N∑
n=1

(∥un∥2 − ∥un−1∥2) = 2kα+1
N∑

n=1

n∑
p=0

βp(δ
2
xu

n−p− 1
2 , un− 1

2 )

+2
N∑

n=1
kρn(δ

2
xu

0, un− 1
2 ) + 2

N∑
n=1

k(fn− 1
2 , un− 1

2 ).

(3.10)

Now each term will be estimated. First, the first term of the right equality is
β0-positive. This follows from Lemma 3.3, on permuting the summation indices
and using, for each fixed j, Lemma 3.4, we obtain

N∑
n=1

n∑
p=0

βp(δ
2
xu

n−p− 1
2 , un− 1

2 ) = −
N∑

n=1

n∑
p=0

βp

J−1∑
j=0

hδxu
n−p− 1

2

j+ 1
2

δxu
n− 1

2

j+ 1
2

= −h
J−1∑
j=0

N∑
n=1

n∑
p=0

βpδxu
n−p− 1

2

j+ 1
2

δxu
n− 1

2

j+ 1
2

= −h
J−1∑
j=0

[
N∑

n=0

n∑
p=0

βpδxu
n−p− 1

2

j+ 1
2

δxu
n− 1

2

j+ 1
2

− 1
4β0(δxu

0
j+ 1

2

)2]

≤ 1
4β0

J−1∑
j=0

h(δxu
0
j+ 1

2

)2 = 1
4β0∥δxu0∥2 = − 1

4β0(δ
2
xu

0, u0).

(3.11)

Second, using Lemma 3.2 and Cauchy-Schwarz inequality, we have

(δ2xu
0, un− 1

2 ) ≤ 1
h2 ∥u0∥∥un− 1

2 ∥,
(fn− 1

2 , un− 1
2 ) ≤ ∥fn− 1

2 ∥∥un− 1
2 ∥.

(3.12)

Substituting (3.11)-(3.12) into (3.10), we have

∥uN∥2 − ∥u0∥2 ≤ 1
2β0

kα+1

h2 ∥u0∥∥u0∥+ 2
N∑

n=1

k
h2 ρn∥u0∥∥un− 1

2 ∥

+2
N∑

n=1
k∥fn− 1

2 ∥∥un− 1
2 ∥.

(3.13)
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With M chosen so that ∥uM∥ = max
0≤n≤N

∥un∥, we have

∥uM∥2 ≤ ∥u0∥∥uM∥+ 1
2β0

kα+1

h2 ∥u0∥∥uM∥+ 2
N∑

n=1

k
h2 ρn∥u0∥∥uM∥

+2
N∑

n=1
k∥fn− 1

2 ∥∥uM∥.
(3.14)

Thus, we obtain

∥uN∥ ≤ ∥uM∥ ≤ ∥u0∥+ 1
2β0

kα+1

h2 ∥u0∥

+2
N∑

n=1

k
h2 ρn∥u0∥+ 2

N∑
n=1

k∥fn− 1
2 ∥.

(3.15)

Because of |ρn0| ≤ Cktα−2
n (see [5], Theorem 3-(a)), we have

N∑
n=1

|ρn0| ≤ C
N∑

n=1
ktα−2

n ≤ C(Nk)α−1 ≤ C(T ). (3.16)

Using (3.15) and (3.16), we finish the proof.

3.3. Convergence

We can now establish the convergence of the scheme by means of the energy
method.

Let

enj = Un
j − un

j , 0 ≤ j ≤ J, 1 ≤ n ≤ N.

Subtracting (2.16)-(2.18) from (2.11) and (2.14)-(2.15), we get the error equations

δte
n− 1

2
j − (kα

n∑
p=0

βpδ
2
xe

n−p− 1
2

j + ρnδ
2
xe

0
j ) = R

n− 1
2

j , 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.

(3.17)

en0 = enJ = 0, 1 ≤ n ≤ N. (3.18)

e0j = 0, 0 ≤ j ≤ J. (3.19)

It follows from Theorem 3.6 that

∥en∥ ≤ C(T )∥e0∥+ 2
n∑

l=1

k∥Rl− 1
2 ∥.

Substituting (2.13) into the above inequality, we have

∥en∥ ≤ CR(h
2 + k2).

We have the convergence result.

Theorem 3.7. Assume that the problem (1.1)-(1.3) has smooth solution u(x, t)
in the domain [0, L]× (0, T ] and {un

j |0 ≤ j ≤ J, 1 ≤ n ≤ N} is the solution of the
difference scheme (2.13)-(2.15). Then it holds that

max
0≤j≤J,1≤n≤N

|u(xj , tn)− un
j | ≤ C(k2 + h2).
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4. Compact difference scheme

4.1. Numerical scheme and solvability

We can easily give a compact difference scheme utilizing compact difference
operator when the spatial accuracy needs to be promoted. For any grid function
v = {vj |0 ≤ j ≤ J} defined on Ωh, denote

Hvj =

{
(I + h2

12 δ
2
x)vj , 1 ≤ j ≤ J − 1,

vj , j = 0 or J.

We construct the following compact difference scheme for the problem (1.1)-(1.3)

Hδtu
n− 1

2
j − (kα

n∑
p=0

βpδ
2
xu

n−p− 1
2

j + ρnδ
2
xu

0
j ) = Hf

n− 1
2

j ,

1 ≤ j ≤ J − 1, 1 ≤ n ≤ N.
(4.1)

un
0 = un

J = 0, 1 ≤ n ≤ N. (4.2)

u0
j = u0(xj), 0 ≤ j ≤ J. (4.3)

Let r = kα+1

h2 β0. The compact difference scheme (4.1)-(4.3) can be written in
the following matrix form

Cun = Dun−1 + kα+1

h2

n∑
p=1

βpBun−p− 1
2 + k

h2 ρnBu0 + kfn−
1
2 , 1 ≤ n ≤ N,

(4.4)
where

C =


5
6 + r 1

12 − r
2

1
12 − r

2
5
6 + r 1

12 − r
2

. . .
. . .

. . .
1
12 − r

2
5
6 + r 1

12 − r
2

1
12 − r

2
5
6 + r


(J−1)×(J−1)

, (4.5)

D =


5
6 − r 1

12 + r
2

1
12 + r

2
5
6 − r 1

12 + r
2

. . .
. . .

. . .
1
12 + r

2
5
6 − r 1

12 + r
2

1
12 + r

2
5
6 − r


(J−1)×(J−1)

(4.6)

and

fn−
1
2 =



1
12 (f

n− 1
2

0 + 10f
n− 1

2
1 + f

n− 1
2

2 ) + kα

2h2βnu
0
0 +

1
h2 ρnu

0
0

1
12 (f

n− 1
2

1 + 10f
n− 1

2
2 + f

n− 1
2

3 )
...

1
12 (f

n− 1
2

J−3 + 10f
n− 1

2

J−2 + f
n− 1

2

J−1 )
1
12 (f

n− 1
2

J−2 + 10f
n− 1

2

J−1 + f
n− 1

2

J ) + kα

2h2 βnu
0
J + 1

h2 ρnu
0
J


(J−1)×1

. (4.7)

It is easy to see that the coefficient matrix of the linear system is tri-diagonal
and strictly diagonally dominant at each time level, thus it is uniquely solvable and
the Thomas algorithm can be used.

Theorem 4.1. The compact difference scheme (4.1)-(4.3) is uniquely solvable.

4.2. Stability
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We now give the estimation of the truncation error and the following lemma may
be used.

Lemma 4.2. [22]. Let function y(x) ∈ C6[0, L], and ζ(s) = 5(1−s)3−3(1−s)5,
then

1
12 [y

′′(xj+1) + 10y′′(xj) + y′′(xj−1)]− 1
h2 [y(xj+1)− 2y(xj) + y(xj−1)]

= h4

360

∫ 1

0
[y(6)(xj − sh) + y(6)(xj + sh)]ζ(s)ds, 1 ≤ j ≤ J − 1.

Lemma 4.3. Suppose that u(x, t) ∈ C6,3
x,t ([0, L] × (0, T ]), then the truncation

error of the scheme (4.1)-(4.3) satisfies

|R̃n− 1
2

j | ≤ CR(k
2 + h4), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N, (4.8)

where CR is a positive constant independent of k and h.

Lemma 4.4. For any grid function {un
j } defined on Ωh ×Ωk and u0 = uJ = 0,

it holds that
N∑

n=1
k(Hδtu

n− 1
2 , un− 1

2 ) ≥ 2
3∥u

N∥2 − ∥u0∥2.

Proof. First, we have

k(Hδtu
n− 1

2 , un− 1
2 ) = k

12h
J−1∑
j=1

(δtu
n
j−1 + 10δtu

n
j + δtu

n
j+1)u

n− 1
2

j

= kh
J−1∑
j=1

(δtu
n
j + h2

12 δ
2
xδtu

n
j )u

n− 1
2

j = k(δtu
n, un− 1

2 ) + kh2

12 (δ2xδtu
n, un− 1

2 )

= 1
2 (∥u

n∥2 − ∥un−1∥2)− h2

12 (∥δxu
n∥2 − ∥δxun−1∥2)

= 1
2 [(∥u

n∥2 − h2

12 ∥δxu
n∥2)− (∥un−1∥2 − h2

12 ∥δxu
n−1∥2)],

(4.9)
where

∥δxun∥2 = h
J−1∑
j=0

|δxun
j |2.

And then, the fact

∥δxun∥2 ≤ 4
h2 ∥un∥2

follows
2
3∥u

n∥2 ≤ ∥un∥2 − h2

12 ∥δxu
n∥2 ≤ ∥un∥2.

Consequently,

N∑
n=1

k(Hδtu
n− 1

2 , un− 1
2 )

= 1
2 [(∥u

N∥2 − h2

12 ∥δxu
N∥2)− (∥u0∥2 − h2

12 ∥δxu
0∥2)]

≥ 2
3∥u

N∥2 − ∥u0∥2.

(4.10)

Theorem 4.5. Suppose {un
j |0 ≤ j ≤ J, 1 ≤ n ≤ N} is the solution of the

difference scheme (4.1)-(4.3), then it holds that

∥un∥ ≤ C(T )∥u0∥+ 2
n∑

l=1

k∥Hf l− 1
2 ∥.

Proof. Taking the inner product of (4.1) with un− 1
2 , we have

(Hδtu
n− 1

2 , un− 1
2 ) = kα

n∑
p=0

βp(δ
2
xu

n−p− 1
2 , un− 1

2 )

+ρn(δ
2
xu

0, un− 1
2 ) + (Hfn− 1

2 , un− 1
2 ), 1 ≤ n ≤ N.

(4.11)
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When N ≥ 1, we have

N∑
n=1

k(Hδtu
n− 1

2 , un− 1
2 ) = kα+1

N∑
n=1

n∑
p=0

βp(δ
2
xu

n−p− 1
2 , un− 1

2 )

+
N∑

n=1
kρn(δ

2
xu

0, un− 1
2 ) +

N∑
n=1

k(Hfn− 1
2 , un− 1

2 ).

(4.12)

Using Lemma 4.4, (4.11) and (4.12), the following process is similar to the proof
of Theorem 3.4 and we omit it.

4.3. Convergence

Applying Lemma 4.3 and Theorem 4.5, we have the following convergence result.

Theorem 4.6. Assume that the problem (1.1)-(1.3) has smooth solution u(x, t)
in the domain [0, L]× (0, T ] and {un

j |0 ≤ j ≤ J, 1 ≤ n ≤ N} is the solution of the
difference scheme (4.1)-(4.3). Then it holds that

max
0≤j≤J,1≤n≤N

|u(xj , tn)− un
j | ≤ C(k2 + h4).

5. Numerical experiment

In the calculation we set L = 1 and T = 1, and compute the problem (1.1)-(1.3)
by using the fractional trapezoidal rule (FTR) type difference scheme (2.16)-(2.18)
and the compact fractional trapezoidal rule (CFTR) type difference scheme (4.1)-
(4.3). Let uFTR and uCFTR be the numerical solutions, respectively.

Denote

EFTR(k, h) = max
1≤n≤N

∥un − un
FTR∥∞,

ratetFTR = log2(
EFTR(2k,h)
EFTR(k,h) ), ratexFTR = log2(

EFTR(k,2h)
EFTR(k,h) ).

Notations ECFTR(k, h), rate
t
CFTR and ratexCFTR are defined similarly.

Example. In the example, the exact solution is given by

u(x, t) = sinπx− 2tα+1

3Γ(α+1) sin 2πx, (5.1)

so the initial datum is u0(x) = sinπx and the inhomogeneous term is

f(x, t) = tα

Γ(α+1) (π
2 sinπx− 2(α+1)

3 sin 2πx)− 8π2(α+1)t2α+1

3Γ(2α+2) sin 2πx. (5.2)

When the spatial step J = 2000 is fixed, Table 5.1 presents the maximum er-
rors and the corresponding convergence order in time of the FTR type difference
scheme (2.16)-(2.18) and the compact FTR type difference scheme (4.1)-(4.3) for
α = 1.25, 1.5, 1.75, respectively. The numerical results reflect the convergence rate
≈ 2 in time.

Table 5.1: The maximum errors and convergence orders when J = 2000



144 HONGBIN CHEN, SIQING GAN, DA XU JFCA-2016/7(1)

N α EFTR ratetFTR ECFTR ratetCFTR

4 2.2316e-2 * 2.2361e-2 *
8 5

4 6.3134e-3 1.8214 6.3142e-3 1.8243
16 1.6522e-3 1.9342 1.6522e-3 1.9342
32 4.2253e-3 1.9673 4.2248e-4 1.9674
4 3.6688e-2 * 3.6688e-2 *
8 3

2 1.0382e-2 1.8212 1.0382e-2 1.8212
16 2.7017e-3 1.9421 2.7017e-3 1.9421
32 6.8469e-4 1.9803 6.8468e-4 1.9804
4 3.9030e-2 * 3.9030e-2 *
8 7

4 1.1195e-2 1.8017 1.1195e-2 1.8017
16 2.9149e-3 1.9413 2.9148e-3 1.9414
32 7.3755e-4 1.9440 7.3745e-4 1.9828

The numerical results in Table 5.2 show that the compact FTR type difference
scheme (4.1)-(4.3) is more efficient than the FTR type difference scheme (2.16)-
(2.18), and the numerical solutions are convergent with the fourth-order in spatial
direction. They are in good agreement with the theoretical prediction of Theorem
4.6.

Table 5.2: The maximum errors and convergence orders when N = 2000
J α EFTR ratexFTR ECFTR ratexCFTR

4 2.0833e-1 * 1.8702e-2 *
8 5

4 5.1009e-2 2.0300 1.1000e-3 4.0876
16 1.3026e-2 1.9694 6.7608e-5 4.0242
32 3.2516e-3 2.0022 4.1648e-6 4.0209
4 1.5916e-1 * 1.3286e-2 *
8 3

2 4.0477e-2 1.9753 7.8847e-4 4.0747
16 1.0557e-2 1.9389 4.8380e-5 4.0266
32 2.6401e-3 1.9995 2.8592e-6 4.0807
4 1.1007e-1 * 8.0276e-3 *
8 7

4 3.0211e-2 1.8653 4.7956e-4 4.0652
16 7.6084e-3 1.9894 2.9386e-5 4.0285
32 1.9182e-3 1.9878 1.6788e-6 4.1296

6. Conclusions

In this article, a fractional trapezoidal rule type difference scheme is formulated
and analyzed for fractional order integro-differential equation. The L2-stability and
convergence are derived. Numerical experiment is reported, which is in accordance
with the theoretical results. The numerical results show that the FTR difference
scheme is convergent with the order O(k2 + h2) and the compact FTR difference
scheme is O(k2 + h4).
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