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A NOTE ON THE RELATIONSHIP BETWEEN THE

HAUSDORFF DIMENSION AND THE ORDER OF

GRÜNWALD’S DEFINITION FOR FRACTIONAL CALCULUS

L. HARDY

Abstract. Given an iterated function system over a function of real n-dimensional

space, we establish a relationship between the Hausdorff dimension s and the

Grünwald’s definition of order q for fractional calculus.

s = 1 +
∑
k

1

qk

1. Introduction

In this paper, we introduce a connection between the Hausdorff dimension s and
the order q of Grünwald’s definition for fractional calculus. We extend our previous
work from [6] over a fractal domain of real n-dimensional space.

2. Preliminaries

We present basic definitions and results on fractional calculus from Agarwal
[1], Grünwald ([4]) and Oldham and Spannier ([8]); on fractals from Edgar ([2]),
Falconer ([3]) and Hutchinson ([7]); and on general measure theory from Halmos
([5]) and Mattila ([9]).
Definition 1 A (finite) partition π of the interval [a, b] is a finite collection of points
{x0, x1, . . . , xN−1}, called partition points, such that a = x0 < x1, . . . , < xN−1 = b.
The length of the interval [xj−1, xj ] is denoted by ∆xj = xj −xj−1. The collection
of all (finite) partitions of the interval [a, b] is denoted by Π[a, b].
Definition 2 A partition π′ is called a refinement of the partition π if every
partition point of xj ∈ π also belongs to π′.
Remark The process of integration or differentiation, denoted by Dq

xf(x), to any
order q ∈ R with respect to x of the function f : [a, b] → R is given in [2] by
Grünwald. If q < 0, q = 0 or q > 0 then we say that the process is a differentiation,
the identity map or an integration, respectively. When q = 1, the Grünwald’s
definition reduces to the ordinary integral of Riemann.

2010 Mathematics Subject Classification. 26A33, 28A80, 26A03, 28A78, 28A35.
Key words and phrases. Hausdorff dimension, Grünwald definition, fractional calculus, order.
Submitted June 19, 2015.

103



104 L. HARDY JFCA-2016/7(1)

Definition 3 (Grünwald definition) Let f : [a, b]→ R is a continuous function on
the interval closed [a, b] ⊂ R. The derivative or integration to order q is given by

D−qx f(x) = lim
N→∞

{
1

Γ(q)

N−1∑
k=0

Γ(k + q)

Γ(k + 1)
f
(
x∗N−k

)
∆qxN−k

}
, (1)

where we denote the gamma function at x ∈ R by Γ(x).
Definition 4 A map S : Rn → Rn is called a contractive map if there exist
an r, called the contraction ratio with 0 < r < 1, such that for all x, y ∈ X,
|S(x)− S(y)| = r|x− y|.
Definition 5 Let I be an index set, possibly infinite. The collection of contractive
maps {Sk : X → X|k ∈ I} on a closed interval X ⊂ R is called an iterated function
system or IFS.
Definition 6 The IFS {Sk} is said to satisfy the open set condition iff there
exists a nonempty open set U for which we have Si(U) ∩ Sj(U) = ∅ for i 6= j and
U ⊇ Si(U) for all i.
Definition 7 Let {Sk} be an IFS. We denote a list of contraction ratios by
(r1, r2, . . . , rN ). If

∑
k r

s
k = 1 then we call s the similarity dimension of the IFS.

3. Extension to Many Variables

Let f : [a1, b1] × · · · × [an, bn] → R is a continuous function on the closed re-
gion [a1, b1] × · · · × [an, bn] ⊂ Rn. The derivative or integration to order Q =

(−q1, · · · ,−qn), denoted by DQ
x1,··· ,xnf(x1, . . . , xn), is given by

lim
N1,··· ,Nn→∞

n∏
k=1

1

Γ(qk)

N1−1∑
j1=0

· · ·
Nn−1∑
jn=0

(
n∏

k=1

Γ(jk + qk)

Γ(jk + 1)

)
×f(x∗N1−j1 , · · · , x

∗
Nn−jn)∆q1xN1−j1 . . .∆

qnxNn−jn

(2)

where we denote the gamma function at x ∈ R by Γ(x).

4. The Extended Grünwald Definition and Iterated Function
Systems

In this section, we define a partition and subsequent refinements of Grünwald’s
definition for integration as an iterated function system on the interval [0, 1]. Also,
we show that it satisfies the open set condition for integration order q > 0.
Definition 1 Let Nk ≥ 2 and qk ≥ 1 for k = 1, . . . , n. Then the Grünwald IFS,

denoted by G, is the collection of maps {Sj1,...,jn(~x)}N1,...,Nn

j1,...,jn=1, where each map is
defined by

Sj1,...,jn(~x) =


1

N
q1
1

. . . 0

...
...

0 . . . 1
Nqn

n


x1...
xn

+


j1−1
N1

...
jn−1
Nn

 . (3)

Theorem 1 If q > 0 then the Grünwald IFS G satisfies the open set condition.
Proof. Without loss of generality, let N ≥ 2, q ≥ 1 and G0 = [0, 1]× · · · × [0, 1].
We denote the mth iteration of the region [0, 1]×· · ·× [0, 1] by Gm. We show by in-
duction on m. Suppose m = 1. Then for any j1, . . . , jn, the contraction Sj1,...,jn(~x)

sends the region (0, 1) × · · · × (0, 1) to a sub-region
(

j1−1
N1

, 1
N

q1
1

+ j1−1
N1

)
× · · · ×
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jk−1
Nk

, 1
N

qk
k

+ jk−1
Nk

)
× · · · ×

(
jn−1
Nn

, 1
Nqn

n
+ jn−1

Nn

)
. We observe that the surrounding

sub-regions are the result of sending the region (0, 1) × · · · × (0, 1) to sub-regions
that do not intersect, and with all of them contained in (0, 1) × · · · × (0, 1) for
all possible values of jk. Now, assume that the Grünwald IFS satisfies the open
set condition at m = j. Applying the contractive map Sj1,...,jn(~x) to the region
(0, 1)× · · · × (0, 1) j-times, we obtain the sub-region(

j∑
l=0

j1 − 1

N1+lq1
1

,
1

N jq1
1

+

j∑
l=0

j1 − 1

N1+lq1
1

)
× . . .

· · · ×

(
j∑

l=0

jk − 1

N1+lqk
k

,
1

N jqk
k

+

j∑
l=0

jk − 1

N1+lqk
k

)
× . . .

· · · ×

(
j∑

l=0

jn − 1

N1+lqn
n

,
1

N jqn
n

+

j∑
l=0

jn − 1

N1+lqn
n

)
.

(4)

Again, we observe that the surrounding sub-regions send the region (0, 1) to non-
intersecting subreations that are also contained in (0, 1)×· · ·×(0, 1). The inductive
step

Sj+1
j1,...,jn

(~x) =


1

N
q1
1

. . . 0

...
...

0 . . . 1
Nqn

n




x1

N
jq1
1

+
∑j

l=0
j1−1

N
1+lq1
1

...
xn

Njqn
n

+
∑j

l=0
jk−1

N1+lqn
n

+


j1−1
N1

...
jn−1
Nn

 (5)

provides the conclusion for n ≥ 1. For q < 1, we observe that there is sub-

region overlap under the contractive maps {Sj1,...,jn(~x)}N1,...,Nn

j1,...,jn=1. However, using
the Grünwald definition, we can always adjust the dimensions of the sub-regions
thereby satisfying the open set condition.

5. Order and the Hausdorff Dimension

In [6], we showed how the integration order is related to the Hausdorff dimension.
We now extend these results to functions of many variables for all orders.
Theorem 2 The Hausdorff dimension of the Grünwald IFS G is s =

∑
k

1
qk

.

Proof. At the mth iteration, Gm can be covered by Nm
k intervals of length

N−mqk
k . Thus, the similarity dimension for each k is required to satisfy the following

condition. ∑
jk

rskjk = Nm
k N

−mskqk = 1 (6)

Note that the Hausdorff dimension for any interval [a, b] of R is one ([2]). In [5],
the dimension of the product space A × B is dimA + dimB. Since the Grünwald
definition for the integration process is defined on a product space, we have the
following theorem.
Theorem 3 The Hausdorff dimension of G × R is s = 1 +

∑
k

1
qk

.

Proof. Since the range R is one-dimensional and the dimension of the domain
is given by Theorem 2, the dimension of the product space is the sum of these
dimensions as in [5].
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