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STABILITY OF FRACTIONAL NEUTRAL AND
INTEGRODIFFERENTIAL SYSTEMS

S. PRIYADHARSINI

ABSTRACT. In this work, a brief overview on the recent stability results of frac-
tional differential equations and the analytical methods used is given. The sta-
bility of the linear fractional system by analyzing the eigenvalues is discussed.
Also the stability of the nonlinear fractional dynamical system is analyzed by
giving conditions on the nonlinear term. Further the stability of fractional
neutral and integrodifferential systems is studied. To show the applicability of
fractional differential equations, some examples were presented.

1. INTRODUCTION

The Fractional Differential Equations (FDE) appear more and more frequently
in different research areas and engineering applications. It has been found that the
behavior of many physical systems can be properly described by using the fractional
order theory. In fact, real world processes generally or most likely are fractional
order systems. Fractional calculus can be an aid for explanation of discontinuity
formation and singularity formation is an enriching thought experiment. Although
fractional derivatives have a long mathematical history, for many years they were
not used in physics. One possible explanation of such unpopularity could be that
there are multiple nonequivalent definitions of fractional derivatives. Another dif-
ficulty is that fractional derivatives have no evident geometrical interpretation be-
cause of their nonlocal character.

However, during the last 10 years fractional calculus starts to attract much more
attention of physicists and mathematicians. It was found that various, especially
interdisciplinary applications can be elegantly modeled with the help of the frac-
tional derivatives. The main reason for using the integer-order models was the
absence of solution methods for fractional differential equations.

Differential equations of fractional order have been the focus of many studies
due to their frequent appearance in various applications such as fluid mechanics,
viscoelasticity, biology, physics and engineering and etc. (see [4, 16l 2]). The
most important advantage of using fractional differential equation is their non-local

property.
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The integer order differential operator is a local operator but the fractional or-
der differential operator is non-local. This means that the next state of a system
depends not only upon its current state but also upon all of its historical states.
These peculiar properties of FDE have attracted the researchers to do research in
this area.

A list of mathematicians, who have provided important contributions up to the
middle of our century, includes P.S. Laplace (1812), J.B.J. Fourier (1822), N.H. Abel
(1823-1826), J. Liouville (1832-1873), B. Riemann (1847), A.K. Grounwall (1867-
1872), A.V. Letnikov (1868-1872), J.Hadamard (1892), O. Heaviside (1892-1912),
G.H. Hardy and J.E. Littlewood (1917-1928), H. Weyl (1917), P. Levy (1923), M.
Riesz (1949) and etc.

The fundamental theorems of existence and uniqueness for ordinary fractional
differential equations are presented in [2 28]. The stability analysis is a central
task in the study of FDE and the stability analysis has been performed by many
authors see [1, 17, 23, 24]. Mittag-Leffler stability and the fractional Lyapunov
direct method, which enriched the knowledge of both the system theory and the
fractional calculus have been discussed in [I8]. Mittag-Leffler stability is a gener-
alization of exponential stability and power-law stability and also the convergence
speed is more accurate than the exponential stability [18].

Next, the stability of a linear fractional differential equation by transforming the
s-plane to the F-plane is reported in [B]. Finally, a procedure for studying the sta-
bility of a system having any number of fractional elements was explained in [27].
In [I3] it is shown that the composite quadratic functions provide necessary and
sufficient conditions for robust stability analysis and robust stabilization of linear
differential inclusions discussed in [I8] 21]. Recently, several approximated numer-
ical methods for solving fractional differential equations have been given such as
variational iteration method see [I1], homotopy perturbation method see [12], Ado-
mian’s decomposition method [I4], homotopy analysis method [9] and collocation
method see [15].

This work is organized as follows. In section 2, some basic definitions and the
stability of the linear and nonlinear fractional system are discussed by analyzing
the eigenvalues and the application of the Lipschitz condition to the nonlinear term,
which is based on the paper [1]. In section 3, the stability theorems for FDE, which
cover the fractional integrodifferential systems and fractional neutral systems is
analyzed. In section 4, the numerical method in which fractional Euler’s method is
used as a prediction, and the modified trapezoidal rule is used to make correction
to obtain the finite value. For further details see [25] [26]. Some examples are solved
and illustrated to explain the theorem.

2. PRELIMINARIES

Basic definitions and results regarding the fractional calculus are given in this
section.

Definition 1. [2J(Riemann - Liouville Fractional Integral). The Riemann-
Liouville fractional integral operator of order o > 0 of a function f € L*(R™) is
defined by

I°f(t) = ﬁ / (t— )21 f(s)ds, (1)

where T'(.) is the Euler gamma function.
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Definition 2. [2](Riemann - Liouville Fractional Derivative). The Riemann-
Liouville fractional derivative of order « > 0,n —1 < a <n,n € N, is defined as

D) = oo () [ = s ©)

where D™ is the ordinary differential operator and the function f(t) has absolutely
continuous derivative upto order (n — 1).

Definition 3. [2](Caputo Fractional Derivative). The Caputo fractional de-
rivative of order a« > 0,n—1 < a <mn,n € N, is defined as

Crha _ 1 ! _5”_0‘_1 nSS
D) = Fora [ (= 9" s, 3

where the function f(t) has absolutely continuous derivative upto order (n — 1).

Mittag-Leffler Function and its Asymptotic Approximation. The exponen-
tial function plays a big role in the theory of ordinary differential equations. An-
other function, which plays a very important role in the fractional calculus,which
is the generalization of the exponential function, it is proved that they are the so-
lutions of superior differential equations called the fractional differential equations.
Since a few decades the special transcendental function known as ML function has
attracted an increasing attention of researchers because of its key role in treating
problems related to integral and differential equations of fractional order. Due to its
attractive feature it is referred as the Queen Function of Fractional Calculus.

Definition 4. [2]Mittag-Leffler function. The one-parameter Mittag-Leffler
function is defined as

Eﬁazg;faziﬁ, (a>0,2€C). (4)

The two-parameter Mittag-Leffler function is defined as
z) = _,

) kz:;) I'(ak + B) (

The Mittag-Leffler function of a matriz A is defined by

a,f >0,z €C). (5)

E, s(At) ,B8>0,AeR"™™). 6
5 Z g @B 0Ack (©
The Laplace transform of Mittag-Leffler functions are given by
L Bap(-M™) = S (R(5) > ) )
o, - S +)\7 )

where t > 0, \ € R.

Lemma 1. [2] Let 0 < a < 2, be a an arbitrary complex number and p be an
arbitrary real number such that =5* < p < min{m,wa}. Then, for an arbitrary
integer p > 1, we have the following expansz'onS'

1 « oz —1—
Eap(2) = 2070 eap(2!/ ZF +O( 7, (®)
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when |arg(z)| < p and |z| — oc;
z

Bap(2) = =D g5 —apy T OUT), (9)

p —k
k=1
when p < |arg(z)| < 7 and |z| — oo.

In particular If o = 3, then we have

P _
1 27k

Eou(z) = Ez(l—a)/aexp(zl/a) _ Z m + O(|Z|—1—p)7
k=2

(a—

when |arg(z)| < p and |z| — oo;

p ka
Ea7(¥(z) = 72 F(Oé _ Olk) + O(|Z|717p)7
k=1

when p < |arg(z)| < 7 and |z| — oo.

Lemma 2. [5] The following properties hold.
(1) There exists finite real constants My, Ms > 1 such that for any 0 < a < 1,

[|Ba(At)|| < Male|l, (10)
| Baa(At)]] < Malle™]], (11)
where A denotes matriz, || - || denotes any matriz norm.

(2) If a« > 1, then for f =1,2,«
| Bas (AL)]] <[], (12)

In addition,if A is a diagonal stability matrix then there exists a constant N > 0
such that for ¢ > 0

|Eap(At*)]| < NeT™,0 < o < 1
|EBap(AtY)]| < e 1< a <2, (13)

where A is the largest eigenvalue of the diagonal matrix. In Particular E,(z) is

bounded in the region % < arg(z) < 27 — &F. In particular when o = 1, that is, e*

is bounded when |arg(z)| > 7. The asymptotic behavior of Mittag-Leffler function

is not of exponential form but it is the form of t~%, (v € R). In particular consider

the Mittag-Leffler function E,(—t*). This function interpolates the negative power
law due to its very slow decay for long times. Thus,

t—a

E(-tY)~ —, t— o0 14

() % = (14)

Also, it may be observed that the behavior of Mittag-Leffler function is relaxation

for a < 1, is exponential for o« = 1, becomes a damped oscillation for 1 < a < 2

and oscillates for & = 2. The decay is very fast as t — 0" and very slow as t — oo.
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3. Stability of a Fractional Nonlinear Systems

This section describes the basic definition of stability and the prevailing research
work on the stability of a nonlinear dynamical system which is related to the work

Definition 5. [I](Stability of a Linear System). Consider the following frac-
tional differentialsystem involving Caputoderivative

“Dox(t) = Ax(t), (15)
with initial value x(0) = 1o = (T10, 220, - - - Tno) ., where & = (x1,22,...,2,)",a €
(0,1) and A € R™*™. The autonomous system is said to be

(1) stable iff for any xo, there exists € > 0 such that ||z(t)|| < e fort >0,
(ii) asymptotically stable iff tlim [lz(®)|| = 0.

Theorem 1. [I] The autonomous system is asymptotically stable iff
arm

| arg(spec(A))] > —- (16)

In this case, the components of the state decay towards 0 like t—.
The proof of the above theorem was simply sketched in [T, 23] and Zeng.et al

[10] have proved in details by using the Mittag-Leffler function.
Consider the nonlinear system of the form

CDox(t) = Ax(t) + f(t,z(t)), € (0,1) (17)
where f(t,z) € C(R x R™",R™), f(¢,0) = 0, and the initial condition is given by
z(0) = xg, where = (z1,...,2,)T, and A € R"*",

Theorem 2. [I] Suppose ||f(t,z(t))|| < M||z|| and all the eigenvalues of A satisfy
@. Then, the zero solution of s asymptotically stable.

The above theorem was analyzed in [1I [23].

This section consists of a Neutral and integrodifferential system of fractional
order and its stability is analyzed with the help of eigenvalues and the conditions
on the nonlinear system. Examples are given to illustrate the theorem.

4. Fractional Neutral Differential Equations

Consider the nonlinear system of the form
D (t) — g(t, 2(t))] = Ax(t) + f(t, (1)), (18)

where the initial condition is given by x(0) = xy and f(¢, ), g(t,x) € C'(J x
R, R"), f(t,0) = 0, g(0,20) # 79, where 0 < a < 1, z = (x1,...,2,)T, and
A e R,

In order to obtain main results, we need the following lemmas and make the fol-
lowing assumptions.

A1l. The function g(¢,z,y) is Lipchitz continuous, that is, there exists posivive
constants C7 and C5 such that

lg(t, 2, y)ll < Crllzl] + Callyll, 2,y € R”
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Lemma 3. [6](Gronwall Inequality)
Suppose that g(t) and ¢(t) are continuous in [to,t1],g(t) > 0,A >0 and r > 0 are
two constants. If

t
o0 <2+ [ lg(ryotr) + rldr, (19)
to
then
t
o0) < O rits — o) esp ([ g(rar) o<t < (20)
to
Lemma 4. [1] If all the eigenvalues of A satisfy
am
| arg(spec(A))| > =, (21)
then there exists a constant K > 0 such that,
t
107 Ea,a(A69)[|d0 < K. (22)

0

Theorem 3. Suppose f(t,z(t)) and g(t,z(t)) satisfies the condition

Lf @& z@O) < My|f]], (23)
lg(t, z(8))]| < Mal|x]],

with My # 1, Assumption A1 holds and all the eigenvalues of A satisfy (@)
Then, the zero solution of s asymptotically stable.

Proof. The given equation can be written as
“D(t) = Ax(t) + f(t,2(t)) +° Dg(t, z(t)).

The solution of the system can be written as,

£(t) = EalA(t))o + / (t = )% Ea a(A(t — 8)){f(s,2(s)) +C D*g(s, 2(s))}ds,
— B (Ao + / (t— 8)  Ea a(A(t — )*) f (s, 2(s))ds

+ / (£ — ) Bua(A(t — 8)%)°D%g(s, 2(s))ds,
0
I, + I,

Let evaluate I,
t
I, = / (t — 8)* By (At — 5)*)°D(s, 2(s))ds,

Ti—a) / / (t—5)* s = T) *Ea.alA(t — 5))g (7, 2(7))drds,

S Ak ' ak+a—1 —«
:m/o“” Y ey [, e -

=0

1

= F(l—a)/o E (A(t —7)*)g (1, 2(7))dr.
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By using integration by parts,
Io = g(t,x(t)) — Eo(AtY)g(0,x0) + A/ ) By o (At — 7)) g(T, 2(7))dT.
Hence,
z(t) = Ea(At*){zo — g(0,20)} + g(t, 2(t))
+/Ot(t— $)* 7 Ea,a(A(t = 5)"){f(s,2(s)) + Ag(s, x(s)) dr.

From this,
@] < [[Ea(At*)(zo — 9(0,20))l + |lg(t, z(t))]]

+/0 10t = 9)°7 Ea,a (At = )| [/ (s, 2(s)) + Ag(s, 2(s))[|dr,
< [[Ea(At%) (2o — g(0,x0))[| + Mall[| + {M + [[A[|[ M2}

/|| ) B (At — 5)*)|| [l2]ldr,
ay (o —g(0,20)) My + ||A]| M,
/” ) Baa(Alt — )| [lalldr.

By using Lemma 1,
t
lz@I] < [[Ea(At*)CL]] exp{02/0 1(t = 5)* 7 Ea,a(A(t — 5)*)[|d7},
(zo — 9(0,20)) o, - Mt |[A[[ M
1-My, 7 1— My

Further, ||Eo(At%)xo|| — 0 as t — oo. [5]
Hence we have tlim x(t) = 0.
—00

where C7 =

Therefore, the zero solution of the given system is asymptotically stable. O

5. Nonlinear Fractional Integrodifferential Equations
Consider the fractional integro-differential equation
CDx(t) = Azx(t) + I%(t,z(t)), 0 < a <1, (24)
where g(t,z(t)) < 0,g(¢,0) = 0, with the initial condition x(0) = z(, where g €
C[J x R*"R™],J = [0, a)

Lemma 5. [I] If all the eigenvalues of A satisfy
am
arg(spec(A))| > 7 (25)

Then there exists a constant K > 0 such that,

t
/ |02 By 00(A0%)||d8 < K. (26)
0
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Theorem 4. Let g(t,z(t)) satisfy
g (t, z(6))[| < Mylfx]], (27)

and all the eigenvalues of A satisfies @ Then the zero solution of s asymp-
totically stable.

Proof. The solution can be represented by

2(t) =Eo(At")zo + /0 (t— s)a_lEa7a(A(t —8)M)I%(s,xz(s))ds

=F,(At*)xo + ﬁ /0 (t— s)o‘*lana(A(t —5)%) /Os(s - T)O‘*lg(T, z(7))drds
=0 + L.

Let evaluate I

1 r a-lie  rye-l —8)M)g(r,z(r))drds
b =f / / (t— )1 (s — 7)° Ea a(A(t — 5))g(r, 2(r))drd
1 t

o) k t
:m /0 g(7,z(1)) Z F(allj—i— ) /T (t — s)*kTol(s — r)o~ldsdr

k=0
— ! _7_20z—1 = (At_7->a)k Ndr
[t Y ey gy ot
= [ = By (A= gt atr)ir
Hence
x(t) = Eq(At%)xzo
+ /0 (t —7)* By o0 (At — 7)*)g(1, z(7))dT.
Then,

t
lz@)]] < [[Ea(At*)zol| +M/0 |(t = 7)2* 7 Eq 20 (A(t = 7))]| ||z[|d7.
By using Lemma 3,
t
lz@)I] < IIEa(z‘lt“)ﬂﬂollexp{M/O I(t = 7)%* 7 Ba,2a (A(t — 7)%)|ld7}.

By using the Lemma 1,
|z < Cl|Ea(At*)zol|.
Further the proof is similar to the theorem 3. [l
Consider the fractional integrodifferential equation
D2 (t) = Ax(t) + g(t, (t), /Ot K(t,s,z(s))ds), (28)
with the initial condition x(0) = xo, where 0 <

(0%
R”, xR",R"], and K € C[J x J x R, R"] with g(t,0)
ted.

< 1,J = [0,a], g € C[J x
= 0,K(t,s,0) = 0 for all



JFCA-2016/7(1) STABILITY OF FRACTIONAL-ORDER SYSTEM 95

Theorem 5. Let K(t,s,x(s)) satisfy

K (s, 2(s))[| < Malzll, s €[0,1] (29)
and all the eigenvalues of A satisfies
| arg spec(A)| > % (30)

Then the zero solution of (@ is asymptotically stable.

Proof. Comparing the equation with the equation , the nonlinear term is
given by

£t 2() = g(t, 2(8), /O K(t, 5, 2(s))ds.

Then the condition for the stability is given by

f &zl = Hg(t,w(t),/o K(t,s,2(s))ds)||

IN

t
Culle]| + Call / K(t,5,(s))ds||.
0

By using the condition , we have

1/t (1), / K(t,5,2(s))ds)|

< Chl|z|| + CaaM; |||l
< M||z|].

Here the nonlinear term satisfies the required condition of the Theorem 3. Further
the proof is similar to the Theorem 3. O

Corollary 1. Consider the nonlinear system of the form

t
D (t) = Ax(t) +/ g(r,z(1))dr, «a€(0,1) (31)
0
where g(t,x) € C(J x R™",R™), g(t,z) <0, g(¢t,0) = 0 and the initial condition is
given by x(0) = xo, where x = (21,...,7,)", and A € R"*". Suppose
g (8, =) < M]|z|] (32)

and all the eigenvalues of A satisfy @) Then, the zero solution of s asymp-
totically stable.

Consider the nonlinear system of the form
CDox(t) — AI%x(t) = f(t,z(t)), O0<a<]l, (33)

where the initial condition is given by x(0) = xo and f(¢,0) = 0, where x =
(r1,...,2,)T, and A € R™*",

Theorem 6. Suppose f(t,z(t)) satisfies the condition
1F (&) < Mfll], (34)

all the eigenvalues of A satisfy (@/ Then, the zero solution of is asymptoti-
cally stable.
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Proof. The given equation can be written as
D (t) = AI%(t) + f(t,z(t))

Taking Laplace transform on both sides, we get

S2a—1

g2 — A
By taking inverse Laplace transform, the solution representation of the system can
be written as,

X(s) = 20 + L{t** " Bgq o (AL**) * f(t, 2(t))}

z(t) = Fao(At**)zg + A (t— s)a71E2a7a(A(t —8)%) f(s,2(s))ds

From this we have,

[zl = [|Eza (A)**)o|| + /0 1t = )7 Baa,a (At = 5)*)I] || £(s,2(5))l|ds

By using the condition

12 (O)]] < || Baa(At**)ao]| +M/O (t = 5)" " Baa,a(A(t = 5)*)] [|f(s,2(5))llds

By using Gronwalls inequality,

t
[lz(®)|| = ||E2a(At2a):co|exp{M/0 sa1E2a7a(A52°‘)}ds

By using Lemma 3,
t
exp {M/ saflEgaya (Aszo‘)} ds is bounded
0

Also || Eaq(arzeyo|| — 0 as t — oo [5].
Hence we have lim;_, o, 2(t) = 0. O

6. Examples

This section includes an example of a linear system and a nonlinear system
which is stable in fractional order and not stable in integer order. From this it is
known that the fractional order system has a peculiar properties which is occured
in nature. Many physical systems can be properly described by using the fractional
systems. Due to the absence of method of solving fractional systems, it is converted
into an integer order system and solved. Also this section provides some examples
to illustrate the above theories. These problems are solved by using the numerical
method in which fractional Euler’s method is used as a prediction, and the modified
trapezoidal rule is used to make correction to obtain the finite value. For further
details see [25] 26]. A system asymptotically stable in fractional order not
stable in integer order

Example 6.1. Now we shall discuss the stability of the linear system
“Dex(t) = Az(t), 0<a<l,
with initial condition x(0) = (1,1)T, where

St
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The eigenvalues of A are given by A = 1+4iv/3. Corresponding eigenvectors are
given by

u = (—0.5i,-0.866)", v = (0.5i, —0.866). It can be written in the standard form
u=a+ib,v =a—ib, where a = (0,-0.866)7,b = (-0.5,0)T.

Case 1:

In the integer order case, that is when oo = 1, eigenvalues does not have the negative

real part. That is | arg(spec(4))| > g is not satisfied. The given system does not

satisfies the necessary conditions of the Theorem 2.1. So the given system is not
stable.

Case 2: -

In the fractional order case, let v = 3, the eigenvalues satisfy |arg(\)| = 3 and

larg(A2)] = g Since all the eigenvalues satisfy |arg(spec(4))| > % The given

system does not satisfies the necessary conditions of the Theorem 2.1. Hence the
given system is asymptotically stable.

x 102 Not Stable when a=1
2
15F
1l
05F
o
®
051
b
-15
ol
-25
o 10 20 30 40 50 60
t
Fig.1
Asymptotically Stable when a=1/2
7 T T T T T T T
6 — xl(l) |
X,(t)
5 g
4
_. 3
b4
2
1
0 F
-1

20 5 10 15 20 25 30 35 40 45 50
t
Fig.2
Nonlinear system stable in fractional order not stable in integer order
Example 6.2. Now we shall discuss the stability of the nonlinear system
D (t) + Azx(t) = f(t,x), O0<a<l, (35)

where A = { :g ?, ] and f(t,z) = (0, —sin(z1(t)))T.

The eigenvalues of the matrix A is given by +i. Let us consider the two cases.
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Case 1:

Integer order case when o = 1. Then it will become an ordinary differential equa-
tion. First consider the homogeneous system, since the eigenvalues of A does not
contain negative real part, it is not asymptotically stable.

Case 2:
Fractional order case when « = 1/2. First consider the homogeneous system, here
the eigenvalues of A satisfies |arg(spec(A))| = g > % Also the nonlinear term

f(t,x) = (0,—sin(z1))T satisfies ||f(t,7)|| < M||x||. Hence the given nonlinear
system is asymptotically stable.

Not Stable when a=1
500

400 —*0
20

3001

200+

1001

X(t)

0
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-300

—-400

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
t

Fig.3

Asymptotically Stable when a=1/2

1.2 — 40
: %0

S

L L L L L L L L L
5 10 15 20 25 30 35 40 45 50
t

Fig.4

Stability of Nonlinear Fractional Dynamical Systems

X(t)

Example 6.3. (Duffing Equation) We shall discuss the stability of the system,
CDox(t) = —x(t) —z(t)®, 0<a<2.
This type of equations are discussed in [19].
When a = 1/2 the nonlinear first order Duffing equation is given by
CDra(t) = —a(t) —ax(t)?, (36)
z(0) = L

The homogeneous system Dz xz(t) = —x(t), which satisfies | arg(—1)| > % Here

f(t,z) = —23, which satisfies f(¢,0) = 0. Since all the conditions of the Theorem
2.2 are satisfied. Hence the given system is asymptotically stable.
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Asymptotically Stable
T T T

T T T T T T
—=1/2
0.9
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0.7

Zos
0.4
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0.2F

0.1r

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
t

Fig.h
When « = 3/2, the nonlinear second order Duffing equation is given by
Dra(t) = —a(t)— (1), (37)
z(0) = 0, 2/(0)=1.

The given equation can be converted into a system of fractional differential equation,
by using the substitution

CDiai(t) = (),
CDigy(t) = w3(t), (38)
CDrag(t) = —w(t) - 2}(),

where z1(t) = x(t), with initial condition z1(0) = 0,22(0) = 1,23(0) = 0. This

( 2
can be written in the standard form, “D/2x(t) = Axz(t) + f(t,x), and f(t,z) =
(0,0, 23(¢))T where

The eigenvalues of A are —1,0.5 £ 0.8660¢, which satisfies |arg(spec(A))| > %

Here the nonlinear term f(¢, z) satisfies f(¢,0) = 0. Since all the conditions of the
Theorem 2.2 are satisfied. Hence the given system is asymptotically stable.

Asymptotically Stable

1.2

_xl(t) |
(0
x50 |7

"o 5 10 15 20 25 30 35 40 45 50
Fig.6
Example 6.4. We shall discuss the stability of the nonlinear system
CDal'l(t) = ZL’Q(t),
Doas(t) = —a(t) — (1 + (1) 22 (1), (39)
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with the initial condition x1(0) = 0.14, x2(0) = 0.125, when a = 0.9.

This can be written in the standard form, “D%z(t) = Az(t)+ f(t,z), where f(t,z) =
(Oa _(1 + -T2(t))2x2(t))T7 Where,

0 1
4= [ ol } |
The eigenvalues of A are £, which satisfies

|arg(spec(A))| > 297, Since the system satisfies all the conditions of the
Theorem 2.2. Hence it is asymptotically stable.

0.25

0.2

0.15

Asymptotically Stable

— xl(l) |
0

0.1

0.05

X(t)

-0.05

-0.1

-0.15

—0.2 L L L L
0 5 10 15 20 25
t

Fig.7
Example 6.5. Consider the linear integrodifferential system of the form
CDx(t) + 3x(t) = —I%x(t), (40)
where o = 1/2, and with the initial condition x2(0) = 2.

This can be written in the standard form Dz (t) = Ax(t)+1%g(t, 2(t)), where A =
—3 and g(t,z) = —z(t). The given system satisfies the necessary conditions of
the Theorem 3.2. Hence it is asymptotically stable.

Asymptotic Stability of Integro FDE

0.9

0.8
0.7

0.6

o] 5 10 15 20 25
t

Fig.8

Example 6.6. We shall consider linear integrodifferential system of the form
t
D (t) + 2(t) = -5 / 2(s)ds + h(t), (41)
0

1, 0<t<L1,

where o = 1/2, with initial condition x(0) =0 and h(t) = { 0 otherwise
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This can be written in the standard form “D%z(t) = Ax(t) + f(t,z(t)), where

A= -2and f(t,x) = fot g(t,z(s))ds + h(t), where g(t,z(t)) = —5z(t) and h(t) =
1, 0<t<1,

{ 0 otherwise.

The given system satisfies the necessary conditions of the Theorem 3.1. Hence

it is asymptotically stable.

Asymptotically Stability of Integro FDE

g |

0 10 20 30 40 50
t

Fig.9

1

X(t)
o

7. CONCLUSION

In nature every system occurs in the fractional order. From this it is conclude
that the fractional order system has attractive feature comparing with integer order
system. In this work, stability of nonlinear system having fractional order between
0 and 1 are studied. In this study, some simple sufficient conditions on the matrix
and nonlinear term guarantees the stability of FDE’s, were obtained. Also stability
of the Fractional neutral and Fractional integrodifferential systems were discussed.
To show the applicability of the obtained conditions, some examples were presented.

Future works include the stability of nonlinear fractional neutral and integrodif-
ferential equations with delay by analyzing the eigenvalues and applying conditions
on the nonlinear term.
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