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EXISTENCE SOLUTIONS FOR THREE POINT BOUNDARY
VALUE PROBLEM FOR DIFFERENTIAL EQUATIONS

MOHAMED HOUAS, MAAMAR BENBACHIR

ABSTRACT. In this paper, under weak assumptions, we study the existence
and uniqueness of solutions for a nonlinear fractional boundary value prob-
lem. New existence and uniqueness results are established using Banach con-
traction principle. Other existence results are obtained using scheafer and
krasnoselskii’s fixed point theorem. At the end, some illustrative examples are
presented.

1. INTRODUCTION

Differential equations of fractional order is rapidly growing area of differential
equations both theoretically and in practical point of view to real world problems.
The theory of existence of solutions to nonlinear boundary value problems corre-
sponding to fractional differential equations have recently been attracted the atten-
tion of many researchers, for more details, we refer the reader to [6, 8, 9, 10, 11, 14,
15, 16, 17] and references therein. Recently, boundary value problems for fractional
differential equations have been studied in many papers, (see [6, 7, 20, 22, 26]). More
recently, some basic theory for the initial boundary value problems of fractional dif-
ferential equations has been discussed in [1, 2, 3, 5, 23, 24]. Moreover, existence and
uniqueness of solutions to boundary value problems for fractional differential equa-
tions had attracted the attention of many authors, see for example,[4, 13, 20, 24]
and the references therein.

In [1, 2, 3, 4, 23, 24], the existence and uniqueness of solutions was investigated
for a nonlinear fractional differential equations with fractional nonlocal integral
boundary conditions by using Schauder and Krasnoselskii’s fixed point theorem. In
this paper we give an improvement of the results in [15, 16, 17], we investigate the
existence and uniqueness of solutions for the following problem:

{ D (t) + f (= (t),DPz (1)) = 0,t € J, (1)
2(0) = zo,2 (0) =0,z (1) =A%z ().

where 2 < o < 3 and 1< < 2,0 <75 < 1, and D* and D? are the Caputo
fractional derivatives, J = [0, 1], A is real constant and f continuous function on
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R2. The paper is organized as follows. In section 2, we present some preliminaries
and lemmas. Section 3 is devoted to the existence of solution of (1). In section 4,
we will give examples to illustrate our main results.

2. PRELIMINARIES

The following notations, definitions, and preliminary facts will be used through-
out this paper.
Definition 1 The fractional (arbitrary) order integral of the function f € L'([a,b],Ry)
of order o € Ry is defined by
t

JEf() = 1 (t—s)* "L f(s)ds,

I'(a),
where I is the gamma function. When a = 0, we write I*f(¢) = (f * q) (t), where
tafl
Yalt) = (o) for t > 0, and ¢4 (t) =0 for t <0, and ¢, —> §(t) as a —> 0, where

¢ is the delta function.
Definition 2 For a function f given on the interval [a, b], the ! Riemann-Liouville
fractional-order derivative of f, is defined by

(Dg+ f) (t) = ﬁ (i)a t(t_gz)nﬂds, n=[a]+ 1.

For more details, we refer the reader to [21, 25].

The following lemmas give some properties of Riemann-Liouville fractional integral
and Caputo fractional derivative [18, 19].

Lemma 1 Let 7,5 > 0, f € Li([a,b]). Then J"J*f(t) = J™t5f(t), DSJ5f(t) =

f(t), t €la,b].
Lemma 2 Let s >r >0, f € Li([a,b]). Then D"J*f(t) = J*~"f(¢t), t € [a,}].

Let us now introduce the following Banach space X = {z : z € C([0,1]), D’z €
C ([0,1])}, endowed with the norm | z ||x=| z || + || D?z ||;|| = |= sup |z ()| and
teJ

| DPx ||=sup |DPx (t)].
teJ

We give the following lemmas [21]:

Lemma 3 Let a > 0. If x € C'(0,1) N L(0,1), then the fractional differential
equation

has solution () = c1t* 1 +cot® 2+ ...+t " €R i =1,2,...,n,n = [a] + 1.

Lemma 4 Assume that z € C (0,1) N L (0,1) with a fractional derivative of order
a > 0. Then

JS DG x(t) = o(t) + e t® ™+ et 2 4 et

We give also the following result
Lemma 5 Let g be function absolutely continuous on J, the solution of the
boundary value problem

{ Doz (t) +g(t) =0t € J2<a<3, 2)
2 (0) = 2,2 (0) = 0,2 (1) = A7 (1)
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is given by:
x(t):_ﬁ/o (t—s)*""g(s)ds + o 3)
I (0+3)t? 1 N
2(/\77”+2_F(0+3))F(a_1)/0 (1-1ys) 2g(s)ds

)\F (0 + 3) t2 n ot+a—1
- d
Q(Anv+2—r(a+3))r(a+a)/0 (=) g(s)ds
1Al (0 + 3) not?
2(Met2 T (c+3))I'(c +1)
Proof For ¢; € R,i =0,1,2, and by Lemmas 3 and 4 the general solution of (2)
is given by

+

1 t 1
x(t):_i/ t—5)"""g(s)ds — co — cit — cot?. 4)
e/ -9 e) (
Thanks to Lemma 3, we get
1 ! ota—1 zon? I(3)not2
g = — t— ) — .
T7 (t) r(a+a)/0( S S D T2 T (o1

Using the boundary conditions for (2), we find that ¢g = —z¢ and ¢; = 0.
For ¢y, we have
A (O’ + 3) K ot+a—1
- d
2()\77‘7+2—1"(0+3))1"(J+a)/0 (=) g(s)ds

Cy = —

r (U + 3) ! _ a—2
+ 2 ()\170+2 (O’ ¥ 3)) (Oé — 1) /(; (1 S) g (S) ds
+ 2o Al (O'—|—3)77

22 —T(c+3)T(c+1)

Substituting the value of ¢g, ¢1 and ¢z in (4), we get (3).

3. MAIN RESULTS

Let us introduce the following notations

['(0+3) [AIC(0+3)n7 "

M, = (a+1) t e T T (o3 T(a) T 2 P =T (0+3) [T (oFatD)
B [(0+3) AL (o+3)77+
Mz = ' B+1) + [Ane+t2—T'(c+3)|T ()T (3—1) + [Ane+2—T(0+3)|T(c+a+1)[(3—06)’
N = Dol AzolT(o-+3)n°
= P PP T (o3 TeFD) T WP FP=T(o+3) [0+ )T G=7)

I [Azo|T(o+3)n°
[AneT2—T(0+3)[T(c+1)I'(3—9)’

_ 1 '(o+3)
0 =r <a+1> * T (et B)T@)
_ F(G’+3)
02 = FammrD T T T@TEA)

we need the following hypotheses
(H1) : The function f : R? — R is continuous.
(H2) : We suppose that the partial derivative of f with respect to z,y exist and
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are bounded. This condition implies in particular, the existence non negative real
numbers w, @ such that for all (x,v), (z1,y1) € R?, we have

|f(tvx7y)_f(t7$17yl)| §w|x_$1|+w|y_y1|7

Our first result is obtained by use of the Banach’s contraction principle.
Theorem 1 Suppose that An°*2 = I (o + 3) and assume that the hypothesis (H2)
holds.
If
(My+ Mz) (w+w) <1, (5)

then the problem (1) has a unique solution on J.
Proof Consider the operator ¢ : X — X defined by

(bx(t)::fﬁ/o (t—s)” (:c (s)) ds + xo

1
I'(o43)t>

T 20w 2= (o+3))I(a—1) (1-s9)" ( (S),Dﬁx(s)) ds

n
AT (043)t2

+ 2(An°t2—T'(c+3))I'(c+a)

/0
/o s) 7 f (w(s), DPa (s)) ds

2o AL (0+3)n7 t2
T 22T (0+3))[(c+1)"

We shall prove that ¢ is a contraction
For z,y € X and for each ¢t € J, we obtain

\¢x<t>—¢y<t>|sﬁ/0’<— 97 F (2 (). D% () — f (4(s), D7y ()] ds

+2|An°+25(g(t?§j\F(a—l)/o (19" 2|f( ), DPx(s)) = f (y (), Dy ()] ds

o 2 K O+o—
+ 2|w+|2A—‘Fr((afé))t\r<a+a>/0 (n=)"" "1 (y(5), D7y () = £ (y(5), D%y (5)) | ds.

Using the (H2), we can write

wllo—yll+w||D*a—Dy|

|pz (t) — ¢y ()] < T(atl)
n F(o’+3)(w”a:fyHer”DﬁfoﬂyH)
2T (7 +3)T(@)

Ao +3)07 2 (wlle—yl+w || D*s—Dy]))
+ 7 2T (0 13) [T (o+at1)

Consequently we obtain,
¢ (@) = & (W)l < My (w+w) (|2 =yl + || Dz — Dy, (6)

and

D% (t) — Doy (1)] < sy / (t = )" P f (e (), DPa(s)) - f (4 (s). D%y (s))| ds

1
ag 2-8 a
+ perEs Flzf(;;:rs;)lf(a Dr(3— ﬂ)/o (1—s) ’ |f( ). DPa (s ) = f(y (s), D% (5))‘d5

o 2-5 K o+a—
+ [T Pl 8 e ) / (n =) f (2 (), D72 () =  (y(s), D%y (9)) | ds.
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By (H2), we have
wHI—y”-‘erDﬂx—DﬁyH F(U+3)(w+|\l—y||+wnDﬁz—DﬁyH)
T(a—p+1) T T T (@G- )
IAD(0-48)7 < (wllz—y |l + || DP o~ DPy|)
[Ane+2—T(c+3)|T'(c+a+1)T'(3—5) .

|DP g (t) — D gy (t)| <

Thus,
|D%¢ (z) = DP¢ ()| < M2 (w + @) (o =yl + || D7z — D%|
It follows from (6) and (7) that
¢ () = & (W)l x < (Mi+ M) (w+w@) (|l —y]| + || Dz — DPy|)) .

Thanks to (5), we deduce that ¢ is a contraction. As a consequence of Banach
contraction principle, the problem (1) has a unique solution on J.

), M

The second result is based on the Scheafer’s fixed point theorem.

Ttheorem 2 Suppose that A\°*2 # T' (0 + 3) and assume that the (H1), (H2)
hold.

Then, the problem (1) has at least one solution on [0, 1].

Proof We use Scheafer’s fixed point theorem to prove that ¢ has at least a fixed
point on X. The proof will be given in several steps:

Step 1 ¢ is continuous on X : In view of the continuity of f, we conclude that
the operator ¢ is continuous.

Step 2 The operator ¢ maps bounded sets into bounded sets in X : For p > 0,
we take x € B, = {z € X;|lz||y < p}.

For x € B, and for each t € J, we have:

oz (t)] < ﬁ/o (t=5)* " |f (2 (s), D" (s)) | ds + |ao]

1
I'(c+43)t2 a—2
v zw,gﬁjr(ggg)lr(afl)/o (1= )2 |f ((s), D% (s))| ds

n
AT (o+3)t> oc+a—1
+ 2o T2—T(oc+3) [T (c+a) /0 (’f] - S) ’f ((E (S)7D’6;U (S))}ds
+ [Azo|T(0+3)n7t2

2|An°+2—I(c+3)|I'(c+1)

Thus,

62 (1) < rarmy (W + @) 2l x + |zl
T'(c+3)
+ XTEe e (o 13T (@) (w+ @) [z x
AL (o +3)n°
+ \)\F(S)n”+2—2f(o—‘:]3)\F(J+a+1) (w+ @) 2] x

n Azo|D(o+3)n”
AT (3)n7F2—2I(6+3)[T(o+1)

We can write

(w+w) w+w)ul(c+3
lpz ()] < r(a+1,)1 + |2o| + 2|)\7§0+27)I,:L(a+3)\1)“(a)

+ (wtm@)p| AT (o+3)n7 T + [Azo|T(0+3)n”
2|An°+2—T(c+3)|T'(c+a+1) 2[Ane+t2—I'(c+3)|T'(c+1) "
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Thus,

1 T'(0+3) AT (04+3)n°te
¢z (t)] < (w+ @) p [F(a—i—l) + e 2|)\n”+2—F(U+3)n|F(U+a+1):|

[Azo|T'(0+3)n7
+ [zl + s ro s T

which implies that

Az o g
16 (@) < (w + @) pMy + || + grrrae et (®)

and

|DPga (t)| < ﬁ/@ (t — ) "7 f (x(s), DPx (s))| ds

1
NG a—2
+ |)\77”+27F(<7+3)\F(afl)F(Sf,B)/0 (1—5) }f ( (s) 7Dﬁw(8>)\ ds

AT (043)t2~# K ot+a—1
+ |)\77“+27|F(‘a+3)\F(aJra)F(Sfﬁ)/O (n—s) |f (2 (s), D% (s)) | ds

+ [Azo|D(o+3)n°t>—F
[An7+2—T(c+3)|[I(c+1)T'(3-B)

We obtain

(wtw) |||l (wtm) ||zl xT'(e+3)
|Dﬁ¢m (t)’ < Tazet) T 2= (o 13) T(@0)T(3=5)

+ (wt@) |||l x T (a+3)n"+ n [Azo|T(c43)n°
e 2—T(0+3) [T (c+at DI (3—PB) ' Ao 2—I(043)T(c+1)I(3—H) "

Consequently,
Azo|T(0+3)n°
D% (2)]| < (w+ @) uMa + |)\n0+27‘1“2200+3)|F(011)F(37ﬁ)' )
Thanks to (8) and (9), yields

Azo|T (o i
16 @)l < (w+ @) 0 (My + M) + o] + el Be

+ [zo|L(043)n7 + [Azo|T(c+3)n°
7 2—T(c+3)[T(c+ 1)L (3—38) | M7 23— (c+3)|[T(c+1)I(3—5) "

Therefore,

16 (2)] x < oo
Step 3 ¢ is equicontinuous on J:

Let us take x € B,,,t1,t2 € J,t1 < ta, we have:

¢z (t2) — ¢ (1)

<oty [ (=" =0 =9 ) | (). D% ()| s

+ F(la)/t12 (ta — s)ai1 !f (ac (s),DPx (s))| ds

I'(o+3)(t2—t2 ! _
+ 2|Anv+2—r<c£ﬁ3>\§2a—1>/o (1—=9)"7|f (¢ (s), D’ (s))| ds

[AT(o+3)(t3—t7) K ota—1
+ 2|/\77“+27F(0'+32)\F(10+a) ) (7] - 3) |f (IE (8) 5 D’BSU (S)) ’ ds

Azo|(0+3)n° (11 —t3)
2[Ane+t2—T'(c+3)|[T'(c+1) "
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Thus,
¢ (t2) — oz (t1))]
< SR (15 - 15) + R (e — 1) + o B (6 - £8)
+ RS (5 — ) + o Ry (6 - 8)
and

| D6 (t2) — DP g (1)
< ﬁ/ 1 ((t1 — )Py — s)aié*l) |f (z(s),DPz(s))|ds

o | =9 (o e) D o) s

I(o43) (1277 t2 A ! a—2
+ o F2— F(aiS)\F(a 1)1‘)(3 5)/0 (1-s) !f(x (S)aDBff (3))|d3

AT (o+3) (127 % —¢2=F K ota—1
+ o t2— F(U-&-S()\F(o'+a)l“(3 B) /0 (’I] — S) |f (.’t (s) 7DB:L’ (S))| ds

IAzo|D(a+3)n7 (57 —t377)
T T T e (T DT (—5) "

Consequently, we have
| D26 (t2) = D g (t1)]

(wtm) a—B _4a—p (wtw) a—B
< Fa—piD (tl — 1 ) + ragim (t2 — 1)

(wtw)ul'(c+3) 2—4 2—0
+ T o4 @) T =) (t — 1 )

+ (wtm)uAL(o+3)n7 " 2B 28
An7T2=T(c+3)[T(c+a+1)T(2—B) 1

+ I e TER) (tffﬁ - tgfﬁ) :
Hence,
¢z (t2) — oz (t1)] x
< e s - 1) + EEE (- 1) + 5 (570 - 657)
+ G (2 = 0) 7 4 e G e (6~ 1)
+ 2&;?%@?5&75??;2) (63 —t7) + 2\Anﬁli§3‘rr((g:33))l?(o+1) (11 —13)

+ (wtm)pt+ L) AT (o43)n°+ 2= _2-BY 4 [Azo|T(0+3)n” 2B _ 28
[Ane+2—T(c+3)|[T'(c+a+1)I'(3—38) \ "2 1 [Ane+t2—T'(c+43)|T'(c+1)['(3—6) \ "1 2 ’

which implies ||¢x (t2) — ¢x (t1)| x — 0 as t — t;. By Arzela-Ascoli theorem, we
conclude that ¢ is completely continuous operator.
Step 4 We show that the set 2 defined by:

O={zreX,x=pp(x),0<p<1},

is bounded:
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Let x € Q, then x = p¢ (z), for some 0 < p < 1. Thus, for each ¢ € J, we have:

1 t a—1
;Ix(t)lsﬁ/() (t— 5" |f ((s), DPw ()| ds + ||

1
I'(o43)t? a—2
+ 2An° 2T (c+3)|T(a—1) /0 (1 — S) ’f (l‘ (S) s Dﬁx (S))‘ ds

AT cr+3)t2 K o+a—1
+ 2‘An”+|2lr((0+3)|F(g+a) /0 (n—1s) ’f (CU (s), Dy (S))‘ ds

+ |Azo|T'(04+3)n7 ¢
2|An°+2—C(c+3)|[I'(c+1) "

So, we can write

1 Azo|T'(c+3)n
e O] < w4+ @) s+ o] + e
Therefore,
Azo|T(oc+3)n7
el < p [(@+ @) s + [zg] + ragelbietm T (10)
and
L
- ‘D J:(t)‘
p

< ﬁ/o (t—s)* 77| f (¢ (s), Dz (s))| ds

1
T(o+3)t2— 78 a—2
+ |)\77”+2—F(z(7+3)\)F(a—l)F(3—6)/0 (1= )" |f (2 (s), D% (s))| ds

I\ (c+3)t2— 7 K ota—1
+|A77‘7+2—F(0+3)\F(U—i—a)F(B—B)/(; (n—s)7"" \f(x(s)vD%(SDIdS

n [Azo|T(o+3)n7 >~
Ao 2=L(c+3)[T(c+1)L(3—H)"

As a consequence, we get

1 I'(c+3)
S D@ < (@t @)p | e S e

AL (o+3)n7+e
+ (W + @) MR T T o) (o Fa TDIT G B)

+ [Azo|T(o+3)n”
[Ane+2—T'(c+3)|T'(c+1)I'(3—B) *

Therefore,

[Azo|T(c+3)n7
|Dz ()] < p [(W + @) M + |/\n”+27F(;+3)\F(UZI)F(?r*,B)] : (11)
Thus, from (10) and (11), we obtain
[zl < pl(w+w)p(My+ My) + |aol]

[Azo|T(0+3)n7 [Azo|T(0+3)n7
+p [2|)\77‘7+23F(o+3)\r‘(0+1) + |>\77"+27F(;+3)\F(o—+1)F(375)}
Hence,
16 ()]l x < o0
This shows that €2 is bounded.
As consequence of Schaefer’s fixed point theorem, the problem (1) has at least one
solution on [0, 1].
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Now, we state Krasnoselskii’s fixed point theorem [21] which is needed to prove
our next existence result.

Theorem 3 Suppose that An?t2 # TI' (o + 3) and assume that the hypotheses
(H1)-(H2) are satisfied, such that

(91 +02) (w—i—w) < 1. (12)
If there exist v € R such that
v>v(w+w) (M + M) + |xo| + N, (13)

then there exists at least one solution of the boundary value problem (1) on [0, 1].
Proof Suppose that (13) holds and let us take

¢z (t) =Tz (t) + Rx (t),

where

Ta(t)i= ~hy [ (6=9)"" 1 (@(s). D% () ds+ a0

1
T'(o+3)t? —2
— TS /0 (1—s)*"2f (¢ (s), D’x (s)) ds,

and

. 2 n ota—
R (t) := 2(A77“+2>\EI(‘(;J§£)’>§)F(U+&)/O (n—9)7"""f (2 (s), D7 (s)) ds

B oAl (o +3)n° t2
2(An°+t2—-T'(0+3))I(c+1) "

(1: x):We shall prove that for any z,y € B,, then T (z) + R(y) € B,. Such that
B, ={z € X;|lz]lxy <v}.
For any x,y € B,, and for each t € J we have:

t
a—1
T2 (t)+ Ry (1) < iy [ (=97 £
1
I'(043)t?
+ 2\/\71”“—1“(0+3)|F(a—1)/0 (1~
n
MI(o+3)t? ota—1
+ 2\)\7;”+‘2—|F((U+3))|F(<7+a)/0 (n—s) |/ (= (s), D%z (5))| ds

+ [Aao|T(0+3)n7 2
2]Anet2—T(c+3)[I'(c+1) "

s)) ’ ds + |zo|

$)* 2 |f (x(s), DPx(s))] ds

We obtain:

wwv w+w)vl(c+3
Tz (t) + Ry (8)] < EE2 + |awo| + gt @)

R ) LIEY W o)) M [Azo|T(o+3)n7
2|An°+2—I(c+3)|T'(c+a+1) 2[An°+t2—T'(c+43)|[T'(c+1) "
Consequently,
[Tz (t) + Ry (1)
['(0+3) [AIT(0+3)n7 ">
<(w+w@v (a+1) t T T (et T@) T I P —T (0 +3) [T (o FatD)

o[T (o 4+3)n”
+ 2ol + s e r T
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which implies that
Az o 7
I (2) + R(y)]| < (w + @) oMy + |20] + sprorirariern. (14
On the other hand,

|DPTz (t) + D°Ry (t)|

< ﬁ/o (t*S)OHB*l}f(x(s),Dﬁf(s)Mds

1
I'(o43)t>—# -2
+ |/\77”+2—F(0+3)\F(a—l)F(S—,@)/0 (1-9)° ‘f (z (s) vD%(SmdS

AT (c43)t2—7 K ota—1
+ |/\77"+27F(0+3)\F(UJra)F(BfB)/0 (n—s) |f (2 (s), D% (s))| ds

+ 2| Az | (04+3)n7 2P
[Ane+2—T(c+3)[T(c+1)I'(3—5)’

we have
|DPTz (t) + D° Ry (t)]

(wtw)v (wtw)vl'(oc+3)
S Ta—ptD) T P 2T (o 13)0(a)TB—F)
R o i G Azo|T(o+3)n"
P2 —T(043)[T(otatTG—5) T e T3 T+ T B-F)

Consequently, we obtain

|DPTx (t) + D°Ry (t)|

) P(0+3) AT (o+3)n°
<(w+mv |:F(a—5+1) T T @TG-F) IM"“—F(””)‘F(‘”““)F(?’_m}
I [Azo|T(c+3)n°

AT 2=T(c+3)[T(c+1)L(3—B)

Hence,

Azo|T(c+3)n7
|D°T (2) + DPR (y)]| < (w + @) vMa + |)\n0+2—‘1"(;-|&-3()\I'J‘r(zf)j—l)F(B—B)’ (15)

It follows (14) and (15) that

IT () + R ()l x

Azo|D(o+3)n7 Azo|D(o+3)n"

< [+ @) v (M + o) + ol + g5
And consequently,

1T (z) + R (y)llx < (w+@)v(Mi+ M)+ |zo| + N < v.
Using the condition (13) we conclude that T'(z) + R (y) € B,.
(2 : %) : We shall prove that R is continuous and compact.
(2.1 : %) : The continuity of f implies that the operator R is continuous.
(

2.2 : %) : Now, we prove that R maps bounded sets into bounded sets of X.
For xz € B, and for each t € J, we have:

o 2 K oTo—
|Rz (t)] < Mn”ii’g((gﬁ))fp(am) /0 (n—s)7 7 f (x(s), Dz (s))] ds

+ [Azo|T(o+3)n°t2
7 P2 T (o 3) (o F1)

T +3) [Tt T e =T (o+3) e+ DTG—F) | *
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using (H2), we obtain

(wtm) AT (g+3)n7+ [Azo|T(0+3)n°
1R (2)| < R T oM ratD) T R T 18T (16)

and

1
A (0+43) a—2
| DRz (t)] < |)\n0+27F(‘a+3)|F(a+a)F(3fﬁ)/0 (1 =) |f (2 (s), D% (s)) | ds

+ [Azo|D(o+3)nt2—#
[Ane+2—T(c+3)[T(c+1)I'(3—45) "

Indeed, we have

(wtw) v AT (o +3)n° T | Az |T(043)n7
|DBR‘T (t)] < \An”+2—F(o+3)|F(0+a—7—1)F(3—ﬁ) + |)\77°'+2—F(;+3)\F(o—?—l)F(S—ﬁ)' (17)

Combining (16) and (17) yields

ML (o+3)n° T ML (o+3)n° e
IR(@)]x < (w+w)v |:2\/\77“+27F(0+3)T]\F(0+a+1) + \/\n“+27F(0+3)\F(Un+a+1)l“(37,8)]+N'
And consequently,
R (@)] x < oo.

Thus, it follows from the above inequalities that the operator R is uniformly
bounded.

(2.3 : %) : The operator R maps bounded sets into equicontinuous sets of X.

Let t1,t2 € J;ty < t1,x € B,. Then, we have:

|Rx (t1) — Rx (t2)]

IND(o+3) (t1—13) /077 (n— )" f (¢ (s), D%x (s))] ds

= | Ane+t2—T(c+3)|T(c+a)

o [T (o+3)n° (312)
t T (o) Tt

we obtain

|Rz (t1) — R (t2)] (18)

(@t AT t3)r7 ™ (2 2 Ao [T (o +3)n" 2 2
< o rsreratD (1 — ) + prrb e teTD (2 — t) -

On the other hand,

|DPRz (t1) — DP Rz (t2)|

IAT(04+3) (377 —4277) " ota—1
< |)\na+2,p(a+3)|1F(U+;)F(3,@) o ("7 - S) ’f (CU (S) ) Dﬁl‘ (S))‘ ds

i [Azo|T(o+3)n7 (t5 7 —t777)
[An7t2—T(c+3)[T(c+1)I'(3—5)’

we can write:

(wtm)v+L) AT (0+3)n T 2-p 2-p
|DP Rz (t1) — D° Rz (t2)] < \)\n‘7+27F(Z+3)|‘F(a+a+1;7f‘(376) (tl —t ) (19)

+ |)‘ZO‘1—‘(0'4'3)776r t27ﬂ _ t27ﬁ
T (o 43T (o + TG F) \ (2 1)
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It follows from (18) and (19) that
w+w)v o oo
|Rz (t1) — Rz (t2)| x < 2|A(n:+2lr|?cli(3)}3():+a+1) (1 —13)

+ ((wHw)V)| AT (6 +3)n° T t2—/3 _ t2—5
[Ane+2—T(c+3)[T(c+a+1)T'(3—58) 2

[Azo|[(0+3)n” 2 _ 42
+ 2\/\77"+23F(a+3)|r(a+1) (t2 - tl)

N IAzo|T(a+3)7° 2P _ 426
[An°T2—T(c+3)[T(c+1)I'(3—B) \ "2 ! '

As t; — to the right-hand side of this inequality tends to zero. Then, as a conse-
quence of steps [(2.1: x),(2.2: %),(2.3: %)]; we can conclude that R is continuous
and compact.

(3 : x): Now, we prove that T is contraction mapping.

Let x,y € X. Then, for each t € J, we have

[T (t) =Ty (t)] < ﬁ/(t—S)a_l\f(x(S)7D5$(8))d8—f(y(8)7Dﬁy(3))!d3

RPTUL U / (1= )| f (2 (s), D%z (s)) ds — f (y(s), D%y (s))| ds.

By (H1),we obtain

(w+=) (llz—yll+|| D’ =—D"y||) n I'(o+43) (wtm) (lz—yll+|| D’ z— Dﬁy||)

Tz (t) — Ty ()| < T(at1) 2 T2—T(c+3)[T(a)

Consequently,

IT () =T ()l < 61 (w+ ) (llz =yl + || D72 — Dy])), (20)

and

|DPTx (t) — DTy ()|

< i [ (=" (@ (9. D () ds = 1 (3/(). Dy () ds

1
T(o+3)t2~# a 2
+ \)\n0+2fF(c§+3)|)F(a71)F(37ﬁ)/0 (1—s) |f( ), DPa (s ) ds — f (y (s), D% (5))‘d5'

Using the (H1) ,we have

(w+w)(\|z—y\|+IID%—D%H)JrF(o+3)(w+w)(\|x—y|\+HD%—D%H)

DT () - DTy (1)] < Ta—pTD) Ry N O e

Consequently,

H (wtw)( ||f'3 y\|+||DﬁI D?y)
—B+1)

<a+3)<w+w>(Hw—yu+||D%—Dﬁy||)
A7 F2—T(0+3)T(a)T(3—B)

<6y (w+w) (||JC -yl + HDﬂx — DﬁyH) )
It follows from (20) and (21) that
IT () = T (1)l x < (01 +02) (w+ @) (2 =yl + || D7z — DPyl]).

|D°T (z) — DT (y (21)
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Using the condition (12) we conclude that T is a contraction mapping.
As a consequence of Krasnoselskii’s fixed point theorem we deduce that ¢ has a
fixed point which is a solution of (1).

4. EXAMPLES

Example 1
Consider the following fractional problem.

3
5 e 2T a(t)| ‘Dh(t)‘
Dz (t) + 20(v/7+2) * (Tr+4e=)? (14+] D20 (1))

2 (0) =v2,2 (0) =0,2' (1) = 2J5 (1) =0.

=0,t€0,1], (22)

So, we have:

Con Dig(t
f (2.Dba () = =120 0] te0,1],z,yeR

C0(T+2) (77 4 de-m)? (1+ ’D%:c(t)D

Let z,y,21,y1 € R and t € J. Then we have:
7 @0 = f )] € s o — |+ —— gy
x,y) — f(x1, <————z—x —_— |y — .
! IS a0 (r v ) T T i ae 2 T

So we can take
e=2m 1

w = , W .
20 (V7 +2) (7m + 4e—7)?

Then,
(Ml +M2) ((.L) +W) < 1.

Hence by Theorem (6) , the boundary value problem (22) has a unique solution on
[0,1].

Example 2
Let us consider the following boundary value problem.
g vl (t)] 1 : 1 —
Dix(t) + @0m+e) (L [=(B)) + 8(r+1)? S ‘D?’f (t)‘ =
2(0)=v3,2" (0) = 0,2" (1) = 477 (3) =

Set,
VT |z
t,r,y) = +
TG0 = g +ie) Tsm ey
For ¢t € [0,1] and z,y,21,y1 € R, we have

gsin|y|,t € J,x,y € R.

NG 1
— < _|xr— — |y —y1l.
|f(z,y) = f(z1,01)] < [20r + ©) |z — 21| + St 1) ly — vl
So, we have
N 1
w = ,W = .
(207 +¢€) 8(m+ 1)

It follows then that
01 +6) (w+w) <1
Hence by Theorem (8), the boundary value problem (23) has a solution.
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