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ON THE SOLUTION OF A GENERALIZED FRACTIONAL ORDER
INTEGRAL EQUATION AND SOME APPLICATIONS

HASHEM H. H. G

ABSTRACT. Here, we introduce a generalized fractional order integral equation and study the
existence of solutions for this equation. Existence of maximal and minimal solutions for this
integral equation will be proved. As an application we present some comparison theorems and
inequalities.

1. INTRODUCTION

The field of fractional calculus is almost as old as calculus itself , but over the last decades the
usefulness of this mathematical theory in applications as well as its merits in pure mathematics has
become more and more evident. Recently a number of textbooks [16], [14], [17], [19] have been
published in this field.

Definition 1. The fractional-order integral of order § of the function f s defined on [a,b] by
(see [7], [17], [16] and [19])

tp_ )81
Iff(t) = / (tr(;)f(s) ds, t>a (1)

and when a =0, we have IPf(t) = Igf(t), t>0.

Definition 2. The Riemann-Liouville fractional-order derivative of order 8 € (0,1) of the function
[ is given by (see [7], [17], [16] and [19])
d

rDPf(t) = S 1P F(R).

An Erdélyi-Kober operator is a fractional integration operation introduced by Arthur Erdélyi
(1940) and Hermann Kober (1940).

_ sm)oz—l

a0 = [T et g as

The Erdélyi-Kober fractional integral is defined in many literature [1] and [3]-[5].

The aim of the short note [18] is to highlight that the generalized grey Brownian motion(ggBm) is
an anomalous diffusion process driven by a fractional integral equation in the sense of ErdelyiKober,
and for this reason here it is proposed to call such family of diffusive processes as Erdelyi Kober
fractional diffusion. The ggBm is a parametric class of stochastic processes that provides models
for both fast and slow anomalous diffusion.
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For the properties of Erdélyi-Kober operators see [1], [7] and [19] for example.

Now, we shall introduce the generalized fractional-order operators as (see [19]and [8])

¢ — ¢(s))*t
o ) = [P ) ) ds ©)
and
D5 10 = Gy | T G ) f9 ds ) £ 0 a<t<h ()

defined for any monotonic increasing function ¢(¢) > 0, having a continuous derivative. The
integral I3 , is usually called a fractional integral of a function f(¢) by a function ¢(t) of order
a > 0, when a = 0 we denote I3 , by I .

If qi), (t) # 0, a <t <b then the operator I3 is easily expressed via the usual Riemann-Liouville
fractional integration (see [17]). So many properties of the operator I%, in particular the semigroup
property
+
I f() = 19577 £(1)

follows directly from the corresponding properties of the Riemann-Liouville fractional integral.

When ¢(t) = ¢ we obtain the Riemann-Liouville fractional integral I¢
Pt — st
1o f(t) = / Y97 fs) ds.
o = [T e
When ¢(t) = ¢™, m >0 we obtain the Erdelyi-Kober (see [1], [7], [8] and [19]) fractional order

operator Ijm ,

Now, we shall denote by Lj = L [a,b] the space of all real functions defined on [a,b].
such that ¢'(t) f(¢t) € L' and fab| ¢'(t) f(t) | dt < oo. where ¢ is increasing function and

absolutely continuous on [a,b] and we introduce the norm

b
150y = [ 160 £ |dtte ()]

Definition 3. the ¢— fractional integral of order a > 0 of the function f(t) € Lé, is defined

as
t t) — a—1
12 10 = [ PO ) 110) as
I3 5 may be known as the fractional integral of the function f(t) with respect to ¢(t).

We shall prove some properties of this integral operator.
Now, for the continuation in Lé of the fractional integral to the usual ones we have the following
lemmas.

Lemma 1. If f(t) € L., then

alen Ity f(t) = 1, f(t) uniformly, n = 1,2,3,...

where I, , f(t) = f; @' (s) f(s) ds.

proof:
From the definition of I3 4, we have

t

|12, f(t) — I, F(b) | < /

a
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Since ¢ is increasing and ¢(t) — ¢(s) is positive, then let o =n — % we get
(6(t) —o(s)*t _ (() —(s)" '
N I'(n— %)
(¢(t) — ()" ! 1

Ln=3)  ((t) — ¢(s))7

By similar way we can prove that
Ig, ft) — Il¢f()asn — 1.
Lemma 2. I?, maps Lé into itself continuously.

proof:
Let f(t) € Ly, we shall prove that I, f(t) € Lj

15 g0 < [ POTE 60 £ as

b t — &(s))x-1
lzesoll < [ [ POZE g o) fas a

b b _ s a—1
< [ R o s e as
= Igzzsa—i—l / [4'(s 5) | ds
< F(Zbof J)r)1) | f(2) ||y from definition of Lj.

Lemma 3. Let f(t) € Ly. If f(t) is bounded and measurable on [a,b], then
Ly f®) i =a = 0.

Proof.
Since | f(t) | < M, then
2,01 < [ LAOSSIE p gis)a
< M : R _F(Z()S))B_l 6/ ()] ds
= M ( ¥25_+¢(C;))6 — Oast — a. B

Example 1:

If f(t) = [o(t) — ¢(a)]’', B> 0. Then
o4 — & _ a « —1
1240 0) = Fa 2 gy o) — 9@
x when é(t)=t, f(t)=(t—a)’', B>0. Then

o) = L0 gyere

T(a+p)
*x when ¢(t) =t™, m >0, f(t)=@t"—a™)?"1, >0. Then
Ig‘f(t) — F(ﬂ) (tm o am)a+ﬂ71
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2. EXISTENCE THEOREM

It is well known that integral equations have many useful applications in describing numerous
events and problems of real world, and the theory of integral equations is rapidly developing with
the help of several tools of functional analysis, topology and fixed point theory. Many papers studied
the fractional order integral equation

t— S)afl

z(t) = at) + /0 (F(a) f(s,z(s)) ds, t € I, a>0. (4)

Here, we prove the existence of at least one continuous solution for the integral equation of fractional
order

z(t) = a(t) + /0 (6(t) — 9(s))* f(s,x(s)) ¢'(s) ds, t € I=[0,1], « >0 (5)

I'()
and the existence of a continuous solution of the nonlinear differential equation of fractional-order
rD%z(t) = f(t,z(t)),t € I and z(0) = 0, a € (0,1) (6)

(where rD? is the Riemann-Liouville fractional order derivative ) will be given as an application.
Also the results concerning the existence of continuous solution of the initial value problem

da(t)
dt
will be given as another application.
Finally, the existence of maximal and minimal solutions of (5) will be proved.
These results extend the results obtained by El-Sayed et al... [6].
Now, Equation (5) will be investigated under the assumptions:

= f(t,z(t)), x(0) = xo, (7)

(i) a: I — R is continuous and bounded with k; = sup |a(t)].
tel

(i) f: I x R — R satisfies Caratheodory condition (i.e. measurable in ¢ forallz: I — R
and continuous in z for allt € I).
(iii) There exists a function m € L; such that

If(t,x)| <m(t) (V (t,z) € I xR ) and ky =supI® m(t) for any < a.
tel
(iv) ¢: I — I be any monotonic increasing function having a continuous derivative.

Theorem 1. Let the assumptions (i)-(iv) be satisfied. Then the fractional integral equation (5) has
at least one solution in the space C(I).

Proof.
Let C = C(I) be the Banach space of all real functions defined and continuous on the interval I.
Fix a number r > 0 and consider the ball S, in the space C(I) defined as

Sy ={xeC():|z(t)]| <rfortel}.
Let T be the operator defined on S, by the formula

(T2)(t) = alt) + /0 (6t _F(f)“))a_ F(s,2(s)) ¢'(s) ds, @ € Sy, t €T,

Then, in view of our assumptions, for z € S, and t €1 we get

t _ s a—1
1o | = el + [ PO o) ¢ ds

< ko 15710 mt)

t _ a—fB—1
< k4 /0 (6(t) r(a¢£8)5)) &/(s) ds
< ki + k2

(o — B+ 1)
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Hence, in view of assumption (ii) we have that T transforms the ball S, into itself for
ko
T(a — B+ 1)
Now, for t; and to € I (without loss of generality assume that ¢; < t5 ), we have
(Tz)(t2) — (Tz)(t1)] = la(tz) — a(t1)
+ I3 f(ta,2(t2)) — 15 f(t,z(t))]
< la(tz) — alty)|+

t1 _ g))e—1
IS fltna(t2) — I flta(t)] < la(ts) — a(t)] +| / (@lt2) — S 1, () /(s) ds

T:kl—l—

o)
to _ a—1 t1 _ s))e—1
o [P o ate) (o) as [ EOT (o) /(o)

s)* !

< lafts) - a(t)l+ / ) O sl s ds 4

2 (Blt2) — o

ty F(a)
B t1 ((b( ) B (b( s x(s s s u _a ta (¢(t2) _ ¢(S))a—1 o (s , ) )
/ — (s (s)) ¢/(5) ds| < | alta) @i+ [ 2w 6 91 .

Then we get
_ a—p
[(To)t) — (To)(t) | < lalts) — alt) | + (hy L2

IM'Na—pB+1)

(o(t2) — (1)) P
T(a—B+ 1)
L)

Tla—B+1) (o(t2) — B(t1))* 7 = 0as ty — t1.

This means that the functions of T'S, are equi-continuous on I. Then by the Arzela-Ascoli
Theorem [2] the closure of TS, is compact .

It is clear that the set S, is nonempty, bounded, closed and convex.

Assumptions (ii) and (iv) imply that T: S, — C(I) is a continuous operator in z.

Since all conditions of the Schauder fixed-point theorem hold, then T has a fixed point in S,.. B

)

i.e.,

| (Ta)(t2) — (Tz)(t) | < [altz) — alt) [+ ko

< |a(tz) — a(t1) | +

3. SPACIAL CASES

Corollary 1. Let the assumptions of Theorem 1 be satisfied (with ¢(t) = t), then the fractional-
order integral equation

has at least one solution x € C.

Corollary 2. Let the assumptions of Theorem 1 be satisfied (with ¢(t) = t™, m > 0), then the
fractional-order integral equation

t m mya—1
t —
z(t) = a(t) + / e = s f(s,z(s)) m s™ ! ds
0
has at least one solution x € C.
Now letting «, 8 — 1, we obtain

Corollary 3. Let the assumptions of Theorem 1 be satisfied (with a(t) = xg and letting o, 8 — 1),
then the integral equation

z(t) = zo + /0 f(s,z(s)) ds.

has at least one solution x € C' which is equivalent to the mild solution to the initial value problem

(7)-
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4. FRACTIONAL ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

For the initial value problem of the nonlinear fractional-order differential equation (6) we have
the following theorem.

Theorem 2. Let the assumptions of Theorem 1 be satisfied (with a(t) =0, ¢(t) =t ), then the
Cauchy problem (6) has at least one solution x € C.

Proof.
Integrating (6) we obtain the integral equation

t (t _ S)afl
o) = [ g (el da b e T Q
which by Theorem 1 has the desired solution.

Operating with rD* on (8) we obtain the initial value problem (6). So the equivalence between

the initial value problem(6) and the integral equation (8) is proved and then the results follow from
Theorem 1.m

5. MAXIMAL AND MINIMAL SOLUTIONS

Definition 4. (see [9]) Let q(t) be a solution of (5). Then q(t) is said to be a mazimal solution
of (5) if every solution of (5) on I satisfies the inequality x(t) < q(t), t € I . A minimal solution
s(t) can be defined in a similar way by reversing the above inequality i.e. x(t) > s(t), t € 1.

we need the following lemma to prove the existence of maximal and minimal solutions of (5).

Lemma 4. Let f(t,x) satisfies the assumptions in Theorem 1 and let x(t), y(t) be continuous
functions on I satisfying

z(t)
y(t)

a(t) + 13 f(t,z(t))
a(t) + I5f(ty(t))

AVARVAN

where one of them is strict.
Suppose  f(t,x) is nondecreasing function in x. Then

a(t) < y(b). (9)

proof
Let the conclusion (9) be false; then there exists ¢; such that

x(tl) = y(lfl)7 t1 > 0
and
z(t) < y(t), 0 < t < t.

From the monotonicity of the function f in x, we get

x(t1) < oalty) + I3 f(ty,x(t1))

t1 _ a —1
<t + [T EE ) (s
< y(t).
This contradicts the fact that z(t1) = y(t1); then

2(t) < y(b).

As particular cases of Lemma 4 we obtain the following lemmas:
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Lemma 5. Let f(t,x) satisfies the assumptions in Theorem 1 and let x(t), y(t) be continuous
functions on I satisfying

xz(t)
y(t)

< alt) + Igf(ta(®)
> alt) + I8 f(y(0)

where one of them is strict.
Suppose  f(t,x) is nondecreasing function in x. Then

z(t) < y(b).

Lemma 6. [6] Let f(t,z) satisfies the assumptions in Theorem 1 and let x(t), y(t) be continuous
functions on I satisfying

z(t)
y(t)

a(t) + I7f(t,x(t))
at) + I°f(t,y(t))

IV IA

where one of them is strict.
Suppose  f(t,x) is nondecreasing function in x. Then

z(t) < y(b).

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Furthermore, if f(t,x) is nonde-
creasing functions in x, then there exist mazimal and minimal solutions of (5).

Proof
Firstly, we shall prove the existence of maximal solution of (5). Let € > 0 be given. Now consider
the fractional-order functional integral equation

ze(t) = a(t) + Ig fe(t, z:(1)), (10)
where
ft,z(t) = f(t,z(t)) + e
Clearly the function f.(t,z.) satisfies assumptions (ii), (iii) and
| fe(t,ze) | < m(t) + e= m/(t).

Therefore, equation (10) has a continuous solution z.(¢) according to Theorem 1.
Let €1 and €5 be such that 0 < e < €1 < €. Then

xﬁl(t) = a’(t) + Ig fﬁl(t’x€1(t))7

ze,(t) = a(t) + 1§ (f(t2e, (1) + e),
> at) + I (ft,ze, () + e), (11)
Te, (1) = a(t) + I (f(t,2,(t) + €). (12)

Applying Lemma 4, then (11) and (12) imply
T, (t) < e, (t) forte I
As shown before in the proof of Theorem 1, the family of functions z.(t) defined by (10) is

uniformly bounded and of equi-continuous functions. Hence by the Arzela-Ascoli Theorem, there
exists a decreasing sequence €, such that €, — 0 as n — oo, and lim z, (t) exists uniformly in
n—oo

I. We denote this limit by ¢(¢). From the continuity of the functions f,, in the second argument,
we get

a(t) = Tim o, () = a(t) + I3 f(ta(t))

which proves that ¢(t) is a solution of (5).
Finally, we shall show that ¢(¢) is maximal solution of (5). To do this, let z(¢) be any solution
of (1). Then

ze(t) = at) + I3 fe(t,z(t))
> a(t) + IS f(tz(1)).
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and
z(t) = a(t) + IF f(t,z(t)).
Applying Lemma 4, we get
x(t) > z(t) fort € I.

from the uniqueness of the maximal solution (see [9], [15]), it is clear that z.(t) tends to ¢(t)
uniformly int € I as e — 0.
In a similar way we can prove that there exists a minimal solution of (5). ®

6. COMPARISON THEOREMS

An important technique is concerned with comparing a function satisfying an integral inequality
of fractional-order by the maximal and the minimal solutions of the corresponding fractional-order
integral equation. Some of the results that are widely used are the following comparison theorems:

Theorem 4. Let the assumptions of Theorem 3 be satisfied and
x(t) < a(t) + Igf(t =), t > 0, (13)

where x(t) is continuous function on I. Suppose that q(t) is the maximal solution of the
fractional-order integral equation

u(t) = a(t) + I ft,u(t)) (14)

existing on I. Then
z(t) < q(t), t €1

Proof. The proof can be done by direct calculations.
Theorem 5. Let the assumptions of Theorem 3 be satisfied and reversing inequality (13). Then
2(t) > s(t),
where s(t) is the minimal solution of (14) on I .

Proof. The proof can be done by direct calculations.

7. APPROXIMATE SOLUTIONS

Let us define an approximate solution of (5).
Definition 5. Let 2:(t) be continuous on I and satisfies
| z(t) — a(t) — 1§ f(t, () | < 6(1),
where § is continuous on I. Then x(t) is said to be a d—approzimate solution of (5).

The following theorem shows the difference between an approximate solution and any other
solution of (5).

Theorem 6. Let f(t,x), g(t,x) satisfy the assumptions of Theorem 1, g(t,x) is monotonic nonde-
creasing in x for each t, and

If x(t,9) is a —approximate solution of (5) and y(t) is any solution of (5). Then
| z(t,0) — y()] < q(b),

where q(t) is the mazimal solution of

u(t) = 8(t) + IS g(t,u(t)).
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Proof.
Consider the function

n(t) = |(t0) — y(@) |,

where z(t,9) is d—approximate solution of (5) and y(¢) is any solution of (5). Then, using the
definition of j—approximate solution and (15), we get

n(t) = |xz(t,0) — y() |

[(t,6) — a(t) — I f(t,y(1))|

| @(t,0) — a(t) — I f(t,=(t,0))] + I5] f(t,z(t,6)) — f(t,y()) |
6(t) + Ig g(t, | x(t,0) — y(t) |)

a(t) + I3 g(t,n(t)).

By a direct application of Comparison Theorem 4, we get

n(t) = |2(t,8) — y(t)| < qt), t >0.m

<
<

The next theorem offers an estimate of the growth of solutions of (5).

Theorem 7. Let f(t,z) and g(t,x) satisfy the assumptions in Theorem 6. If

[f(t, @) < g(t, |=]); (16)
then

[z(8)] < q(t), t=0,
where x(t) is any solution of (5) and q(t) is the mazimal solution of

ut) = h(t) + Ig g(t,u(t)) (17)
such that | a(t) | < h(t), t € I.
Proof.
If n(t) = | z(t) |, we have by (16) the fractional-order integral inequality

n(t) = [z@) | < [a®) [+ I3[ f{t2(1) ]
< h(t) + I g(t | =() |)
h(t) + 15 g(t,n(t)),

and consequently, Comparison Theorem 4 gives
n(t) = |z(t) | < q@t), t =2 0,
where ¢(t) is the maximal solution of (17).

Theorem 8. Assume that:

(i) f1, fo, g satisfy the assumptions of Theorem 1, g(t,u) is monotonic nondecreasing in u for

each t, and
lAte) = folty)l < gt |z — y ) (18)
(ii) z(t), y(t) are any two solutions of
z(t) = a(t) + I3 fi(t,z(1)),
y(t) = a(t) + I3 fa(t,y(t)),
respectively;

(iii) ¢(t) is the mazimal solution of

u(t) = h(t) + I g(t,u(t))
such that
| ai(t) — a2(t) | = h(t), t €1,

where a1, as, h are continuous on I.
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Then
|l z(t) — y(t) | < q(t), t €1
Proof.

The proof is an easy modification of the proof of Theorem 6. For, setting n(t) = |z(t) — y(¢)| and
using (18), we obtain

n(t)

a(t) — y() |

a1(t) — az(t) | + 15 | fi(t,z(t)) — fa(t y(D)) |
h(t) + 15 g(t,[ z(t) — y(t)])
h(t) + 13 g(t,n(t)).

The result follows from Theorem 4. ®

<
<

Corollary 4. Let the assumptions in Theorem 8 be satisfied with a1 = as , then
lz(t) — y@) | < q(b),
where q(t) is the mazimal solution of
u(t) = I g(t,ult)). (19)
Theorem 9. Let the assumptions in Theorem 8 be satisfied with a1 = as and f1 = fo, then
z(t) = y(t).
If u(t) = 0 is the only solution of the fractional-order integral equation (19).
Proof.

Let z(t), y(t) be as in Theorem 8. Setting n(t) = | z(t) — y(t) | and arguing as before, we get
n(t) < q(t), tel,
where ¢(t) is the maximal solution of (19). Since w(t) = 0 is the only solution of (19), then
n(t) = [z(t) — yt)| <0 = z(t) = yt).m
Remark 1. Clearly, when fi = fo condition (18) yields Perron’s condition which implies an
uniqueness theorem of Perron type.

Remark 2. When g(t,u) = Ku and f; = fo then condition (18) becomes Lipschitz condition.

Now consider the following two fractional-order functional integral equations
z(t) = ai(t) + I3 f(t,z(t)), a € (0,1), (20)
y(t) = az(t) + I f(t.y(1), B < a (21)

where a1 (t), as(t) are continuous functions on I.
The following theorem is another comparison theorem which is more general than Theorem 8.
Theorem 10. Assume that:

(i) f, g satisfy the assumptions of Theorem 1, g(t,w) is monotonic nondecreasing in u for each
t, and

1577 ft2) — fty) | < gt ]z — )
(il) z(t), y(t) are any two solutions of (20) and (21) respectively;
(iii) q(t) is the mazimal solution of
u(t) = h(t) + I g(t,u(t))
such that | a1(t) — aa(t) | < h(t), t €1, where h(t) is continuous on I.
Then
[ a(t) — y() [ < q(t), t €.
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Proof.

Similarly as in Theorem 8, putting

n(t) | z(t) — y(@) |

< lait) — ax(t) + I5 11377 f(ta(t) — fty@)], B < «
< h(t) + Iy g(t,|z(t) — y(t)])
= h(t) + Iﬁ g(t,n(t)),

it follows from Theorem 4 that

| 2(t) — y(t) | < q(t), t €Im
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