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ANALYSIS OF A FRACTIONAL-ORDER PREDATOR-PREY
MODEL WITH HARVEST INCORPORATING AN ALLEE
EFFECT

D. BRAVO, M. BARRIOS, G. REYERO

ABSTRACT. The objective of this work is to model a population management
in which two species intervene. There is an interdependence predator-prey
relationship between them. It will be assumed, as a descriptive biological
model, the Lotka-Volterra one with the application of an Allee effect in one
of the dynamics of the species. This incorporation into the system make the
model more realistic. In view of the advantages, the model will be in its
fractional version, that is, where derivatives of Caputo of fractional order are
considered, with the fractional order in (0,1]. Existence and uniqueness of
the model solution will be explicitly proved, and a non-negative invariance of
the solution and the stability of the resulting equilibrium will be studied. In
order to solve the problem, the use of fractional numerical techniques will be
of fundamental importance and absolutely essential to conclude the analysis.
Some examples of great importance will be shown.

1. INTRODUCTION

Predicting the future of a population number is one of the most important fac-
tors needed for the good management of it. This has been treated by several known
methods, one of them being the development of a mathematical model which de-
scribes the population growth. The model generally takes the form of a differential
equation, or a system of differential equations, according to the complexity of the
underlying properties of the population.

A classical Lotka-Volterra predator-prey mathematical model is a system of non-
linear first-order differential equations that studies the growth of two biological
populations occupying the same environment. One species, predators, feed on the
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other species, preys, which in turn feed on a third food widely available in that
environment, [15].

In this work, a predator-prey model with harvest incorporating an Allee effect
will be studied. The harvest will affect predators, this may be from capture by
humans. The so-called Allee effect will modify the growth of preys. The currently
most used growth models are those that have a sigmoid solution in time, includ-
ing Gompertz and Verhulst’s logistic equations. The logistic equation is commonly
used in population growth models, disease propagation epidemic, and social net-
works [6]. These equations are based on the assumption that the density has a
negative effect on the per-capita growth rate. However, some species often incorpo-
rate among themselves in their search for food and to escape from their predators.
For example fish and birds often form schools and flocks as a defense against their
predators. Some parasitic insect aggregate so that they can overcome the defense
mechanism of a host. A number of social species such as ants, termites, bees, etc.,
have developed complex cooperative behavior involving division of labor, altruism,
etc. Such cooperative processes have a positive feedback influence since individuals
have been provided a greater chance to survive and reproduce as density increase.
Aggregation, associated cooperative and social characteristics among members of a
species were extensively studied in animal populations by Allee [4]. The phenom-
enon in which reproduction rate of individuals decrease when density drops below
a certain critical level is now known as the Allee effect, [I2] and [27].

On the other hand, motivated by its applications in different scientific areas
(electricity, magnetism, mechanics, fluid dynamics, medicine, etc. [5], [8], [I1], [20]
and [22]), fractional calculus is in development, which has led to great growth in
its study in recent decades. The fractional derivative is a nonlocal operator [26],
this makes fractional differential equations good candidates for modeling situations
in which it is important to consider the history of the phenomenon studied [1], [2],
3], [10], [T7], [18], [21] and [24], unlike the models with classical derivative where
this is not taken into account. There are several definitions of fractional derivatives
[16] and [22]. The most commonly used are the Riemann-Liouville fractional de-
rivative and the Caputo fractional derivative. It is important to remark that while
the Riemann-Liouville fractional derivatives [25] are historically the most studied
approach to fractional calculus, the Caputo [I3] and [I4] approach to fractional
derivatives is the most popular among physicists and scientists, because the differ-
ential equations defined in terms of Caputo derivatives require regular initial and
boundary conditions. Furthermore, differential equations with Riemann-Liouville
derivatives require nonstandard fractional initial and boundary conditions that lead,
in general, to singular solutions, thus limiting their application in physics and sci-
ence [19] and [20].

In the present work, a predator-prey model with harvest incorporating an Allee
effect will be analyzed, in presence of Caputo derivatives. The paper is organized
as follows: some basic definitions of fractional derivatives and fractional differential
equations are shown in Section 2. Results are presented in Section 3, the model
description is in Section 3.1, existence and uniqueness of the problem solution is
proved in Section 3.2, its non-negative invariance is demonstrated in Section 3.3,
stability of the model is studied in Section 3.4 and an example is shown in Section
3.5. Finally, conclusions are presented in Section 4.
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2. MATHEMATICAL TOOLS

2.1. Introduction to fractional calculus. In this section, we present some defi-
nitions and properties of the Caputo fractional derivatives. For more details on the
subject and applications, we refer the reader to [I6], [25] and [26].

Definition 1. The Gamma function, T': (0,00) — R, is defined by
I(x) :/ s"le75 ds. (1)
0

Definition 2. The Riemann-Liouville fractional integral operator of order a € RS‘
is defined in L'[a,b] by
T = e [ = s 2)

Definition 3. If ’gg—,{ € L'[a,b], the Caputo fractional derivative of order a € RS‘
is defined by

« . 1 ! n—l—a«a dn
CDI = oy | T ) s 3)

Now some different properties of the Caputo derivative will be seen.
Proposition 1. If K is an arbitrary constant then ¢ DY [K] = 0.

Theorem 1. Let f(t) € AC[0,T], T > 0, where AC[0,T] denotes the set of abso-
lutely continuous functions on [0,T]. Then for 0 < o < 1:

F(t) = 1(0) + =——— ED2 [f] 12, (4)

I'a+1)
with 0 < & <t, vt € [0,T].

Remark 1. Theorem (1] is known as the generalized mean value theorem. When
a =1, it reduces to the classical mean value theorem.

Corollary 1. Suppose that f(t) € AC[0,T], T > 0 and §D{[f] € C(0,T] for
0<a<l If §D¢[f] >0(SD[f] > 0),Vt € (0,T), then f(t) is non-decreasing
(increasing) and if $D[f] < 0(§Dg[f] < 0),Vt € (0,T), then f(t) is non-
increasing (decreasing) for all t € [0,T].

Remark 2. Proposition [1, Theorem [1] and Corollary [1, show that the Caputo
fractional derivatives are similar to the classical derivatives in these senses.

2.2. Fractional initial value problems.

Definition 4. Let f: R" 5> R xR™, ¢t >0, ug € R, and 0 < a < 1. A fractional
initial value problem is defined by
ng‘ [u] = f(tau(t))’
(5)
u(0) = up.
Theorem 2. Consider 0 < a <1, ug € R, K >0, h* > 0.
Define G := [0, h*] x [ug — K,uo + K] and let the function f : G — R be continu-
ous. Furthermore, define M := sup |f(x,z)| and
(t,z)eG
h* if M =0
h:= 6
{ min{h*, (%)é} else. (©6)



4 D. BRAVO, M. BARRIOS, G. REYERO JFCA-2023/14(2)

Then, there exists a function u € C[0, h] solving the fractional initial value problem
Theorem 3. Assume the hypotheses of Theorem[d Moreover assume that f : G —

R satisfies a Lipschitz condition with respect to the second variable, that is, there
exists L > 0 independent of t,u; and us such that

1f(t, ur) = f(E, u2)l| < Lfuy — usl, (7)

for all (t,u1) y (t,uz) € G. Then, denoting h as in Theorem [ there exists a
uniquely defined function uw € C[0,h] solving the fractional initial value problem

Since the exact solution of fractional differential equations can be very difficult
to find, an introduction about stability analysis and the fractional Adams numerical
method will be useful.

2.3. Fractional stability analysis.

Definition 5. The fractional initial value problem (@ is said to be autonomous if

it is defined by

{ gD? [’LL] = f(u(t)), (8)
u(0) = uyg,

where f: R™ — R™.

When talking about stability, one is interested in the behavior of the solutions
of when t — oco. Therefore, the equilibrium points are defined as the solutions
Ueq Of

¢ D [u] =0 & flueg) =0. (9)
To study the stability of each point, the jacobian matrices J of f evaluated at the
equilibrium points J(ue,) are considered. Then, the eigenvalues Aoy of J(ueq) are
calculated for each equilibrium point. Finally, conclusions are drawn following the
Theorem below, see [2] and [16].

Theorem 4. Consider \cq the nonzero eigenvalues of J(ueq), jacobian matriz of
f asociated to each equilibrium point ueq.
o Iflarg(Aeq)| > &F for all Ay and all eigenvalues with |arg(Xeq)| = % have
a geometric multiplicity that coincides with their algebraic multiplicity then
Ueq 15 locally stable.
o If larg(Aeg)| > &5 for all Ny, then ucq is locally asymptotically stable.
o If larg(Aeq)| < & for some Aeq, then ueq is locally unstable.

Remark 3. In the previous theorem, arg(Aeq) is considered as the main argument
of the complex number Aeq, that is arg(Aeq) € (—m, w|. Also, when any of the
eigenvalues is zero, the stability of the equilibrium point is said to be a degenerate
case.

2.4. Fractional numerical method. To perform numerical implementations a
predictor-corrector method is used. Fractional Forward Euler method is utilized
to get uf 41 (predictor), and then fractional Trapezoidal Rule is used to get 41
(corrector), which leads to fractional Adams method, [7] and [23]. A regular parti-
tion of [0,1] is considered, as to =0 < t1 < ... < t,41 =t with ¢;41 —t; = At. The
method approximates the solution u(t) by interpolating the points (¢, un+1(j)),
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Vj=0,...,n+ 1, where u,11(j) is the j—th component of the vector u,,; obtained
through the following recursion:
P n
Upy1 = % + 20 bj,nJrlf(uj)a
7 . (10)
Uns1 =+ 20 @ns1f(U)) + a1 f(ug ),
§=0
where
At®
b; ==
3,m+1 F(Oé + 1) [(

are the coefficients of the fractional Forward Euler method and

n—j+1)% = (n—-75)"° (11)

Ape n“"‘l.—(n—oi)(n—&—l)“. ) . j:Q
G = gy | (=D 20— ) k=) 1< <
1 j=n+1
(12)

are the coefficients of the fractional Trapezoidal Rule method.

3. RESULTS

The scope of this section is to present a fractional differential equation model of
two species in competition. There is an interdependence predator-prey relationship
between them. It will be assumed, as a descriptive biological model, the Lotka-
Volterra one with the application of an Allee effect in one of the dynamics of the
species. Existence and uniqueness of the model solution will be explicitly proved
and the stability of the resulting equilibrium will be studied. Finally, some examples
will be shown.

3.1. Model description. In this work, the following model will be analyzed, which
is a particular case of for two dimensions:

§D7 o] = ra(t) (1 - 52) (@(t) — m) — bty (1),
§D2[y) = cx(tyy(t) — dy(t) — ey(t), (13)
z(0) =z,  y(0) = yo,

where 0 < <1 andt > 0.

In these equations, x(t) represents the number of preys, y(t) represents the num-
ber of predators at time ¢ and the parameters r, K, m, b, ¢, d, e are all positive.

First equation models the growth of preys. First addend corresponds to their
growth, where an effect called Allee is considered in which the following parameters
intervene: intrinsic growth rate r , carrying capacity K and Allee effect threshold
m , which means the minimum population density for the growth of certain species,
below which the population dies out (the population growth rate is positive only
within the range m < z < K and is negative outside this range). Second addend
represents the decrease in preys to be captured, [I0] and [9].

In the equation that models predators, it can be seen that the first addend
corresponds to their growth by capturing preys, the second addend represents the
natural mortality of predators, while the third addend represents their harvest.
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3.2. Existence and uniqueness of the problem solution. In this section the
study of the existence and uniqueness of the solution for system will be seen.

Theorem 5. There exists an unique solution u(t) = (x(t),y(t)) for system
with t > 0.

Proof. Theorem [3|is considered in region the G := [0, h*] x Q, where the set
Q is defined by Q = [zg — H,zo + H] X [yo — H,yo + H].
Define f : G — R? as f(t,u) = (f1(t,u), f2(t,u)) with

filt,u) =rx (1 - %) (x —m) — bxy

and
fa(t,u) = cxy — dy — ey,
f is continuous in G.
Furthermore, f satisfies Lipschitz condition . In effect, let u = (z,y),a =
7) € Q, then considering ||f(t,u) — f(t,a)|| = |f1(t,uv) — fi(t,@)] + | f2(t, u) —
t,u)|, it is obtained

(z,
fa(
[f(t,u) = ft @) = |rz(1- %) (@—m)—bry—rz (1 - §)(Z—m)+bzy]|
+  Jexy —dy — ey — cxy + dy + ey
= |r(z*=2%) +rm(@ —2) + £ (@ — 2%) — zm(z* — 2?)
+ 0(Z7 —xy)| + |c(ry —77) +d(G —y) +e(F —y)|
< r2H|x —Z| +rmle — T + 3H?* & |x — 2| + 2H Hm|x — |
+ ObH|y—vy|+ bH|zx —Z|+ cHlx — Z| + cHl|y — §| + d|y — 7|
+ ely—yl
(r2H +rm+ 3H?*% + 2H £m + bH + cH)|z — Z|
+ (bH+cH+d+e)|y—17|
Lllu — al|

IN

where L = maz{r2H + rm + 3H? % + 2Hm + bH + cH,bH + cH + d + €}.
It follows from Theorem [3| that there is a unique solution u € C[0, h] of system
with initial condition ug = (zg, yo)-
O

3.3. Non-negative invariance. Denote R2 = {(z1,22) € R? : 21 >0, 25 > 0}.
Theorem 6. The solution for with t > 0 remains in Rﬁ_.

Proof. In order to make the demonstration, Corollary [I]is considered. Assume
problem with (z9,y0) € RZ. With the objective of seeing how the solution
evolves, different initial condition are proposed.

Case 9 = 0, yo > 0. In this situation, from problem :

ngJr [.’IJ] = 07
§DY [yl = (—d—e)yo <0.
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This implies x(t) = 0Vt € [0,T] and y(t) decreases asymptotically to zero. If there
exists t* € (0,7 in which y(t*) = 0,

§ D [yl = 0.

This implies y(¢) = 0V¢ € [t*,T], then y(¢) £ 0, V¢ € [0,T]. In conclusion, z(t) > 0,
y(t) > 0Vt € [0, 7).

Case xg > 0, yo = 0. In this situation, from problem :

¢ Do [2] = rao (1 32) (z0 —m),

6 D5 ] = 0.
This implies y(¢t) = 0Vt € [0,7] and x(¢) will depend on the value of zg. If
z9 > K then §'Dg, [z] < 0, this means z(t) decreases asymptotically to K and
remains positive. If g = K then §Dg, [z] = 0 then z(t) = K > 0Vt € [0,T]. If
m < zo < K then §D, [z] > 0, which means x(t) creases asymptotically to K
and remains positive. If 2o = m then DS, [z] = 0, then z(t) = m > 0Vt € [0,T].
Finally if 0 < 29 < m then ngtr [x] < 0, this implies z:(t) decreases asymptotically
to zero, where, as the previous case, we can infer that z(t) £ 0, V¢t € [0,7]. In
conclusion, z(t) > 0, y(t) > 0Vt € [0,T).

Case xg = 0, yo = 0. The system does not evolve.

Case xg > 0, yo > 0. If {Dg, [z] > 0 then x(t) > 0V¢ € [0,T]. Let’s suppose
§ Dy, [x] <0, then z(t) decreases. If there exists ¢* € (0,7] such us z(t*) = 0 then
we can follow the ideas of the first Case to conclude that x(t) > 0, y(t) > 0Vt €
[0,T]. Analogously for y(t).

Therefore the solution for (13)) with ¢ > 0 remains in R .

3.4. Stability analysis of the problem solution.

3.4.1. Equilibrium points. The local stability of system will be discussed below.
Let us observe that the equation is autonomous and, for this reason, we are in a
position to use what we have seen in Section [2.3
Setting § D¢ [x] and § D [y] equal to zero, the following 4 equilibrium points
are obtained:
(1) Trivial state P;(0,0), which corresponds to the extinction of the species.
(2) Axial state P>(K,0), which corresponds to the fact that preys reache the
carrying capacity and there is no presence of predators.
(3) Axial state P3(m,0), which corresponds to the fact that preys stabilize at
the threshold of Allee and there is no presence of predators.

(4) Coexistence of the species state Py (¢, 7 (1 — &ke) (dte — ).

Remark 4. P, only makes sense when em —d < e < cK —d, because x(t) and y(t)
must be non negatives. Also, it can be observed when e = cm — d then Py = P3 and
when e = cK — d then Py = P,. Therefore, only the case in which cm —d < e <
cK — d will be analyzed to guarantee the coexistence of the species.
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3.4.2. Linearization. The jacobian matrix of system at a point P(x,y) is the
following:

J(x,y):(7‘(1—;‘;)(x—m)—I’;x(x—m)—krm(l—;)—by —bx )

cy cx — (d+e)

(14)

Using Theorem [4] the stability of equilibrium points Py, P, P3 and Py is analyzed.

e Jacobian matrix evaluated in P;(0,0) is

Tr = ( o —(d0+ ¢) ) (15)

Its eigenvalues are Ay = —rm and A2 = —(d + ). Being r,m,d,e > 0,
A1, A2 € R™ results |arg(A)] = larg(Ae)| =7 From 0 < a <1 =0 <
af < I <7 Yae (0,1], then |arg(A;)| > af Vo€ (0,1], i =1,2.

Theorem 7. The equilibrium P of system 18 locally asymptotically
stable.

e Jacobian matrix evaluated in P(K,0) is

= (T e Ty ) 19

Its eigenvalues are Ay = r(m — K) and Ay = ¢cK — (d + e). Being m < K,
A1 € R™ results |arg(A1)| = 7 > af Va € (0,1]. On the other hand, since
e < cK —d is considered, Ay € R and then |arg(A2)| = 0 < af Ya € (0,1].

Theorem 8. The equilibrium Py of system 18 locally unstable.

e Jacobian matrix (14) evaluated in Ps(m,0) is

_ [ rm(1-%) —bm
Jp, = ( 0 em—(d+e) )7 (17)
Its eigenvalues are A\; = rm(1 — %) and Ay = cm — (d +e). Being m < K,

A1 € RY results [arg(A1)| =0 < o Va € (0,1].
Theorem 9. The equilibrium Ps of system 18 locally unstable.

) (5= —m)) is

g [ (o m) o+ (K- )] bt
Jp, = . . . (18)
s (G —m) (K — <€) 0
The following characteristic equation is obtained
A N (5 ) — (K — )] 4 ot £ (B2 ) (K — £22) =0, (19

c c c K c

c

e Jacobian matrix (14 evaluated in P, (£F¢, (1 — 4£e

The roots of this polynomial are:

e I
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where

A= [t [ —m) = (K — )] —detbe & (42— m) (K — 42). (21)

c c c

From em —d < e < ¢K — d, then
et fo (52 —m) (K — ) > 0, and A < [ 45 [(FE2 —m) — (K — 4

C C

Different cases are analyzed according to the value of e.

— Case cm —d < e < §(K +m) — d: it can be deduced that

rd+e d+e d+e

ZeTel (frE K- . 22
R () () e

x If A > 0, A, 2 € RT then |arg(A1)| = |arg(X2)| = 0 <
af Yo e (0,1].

* If A < 0then A1, Ay € C are conjugated, with Re(\1) = Re(\2) >
0 from and |arg(A1)] = |arg(A2)| =
= |tan™! Lm[(mi ;§,(K,m)] € (0, %), so its stability

K ¢ c

will depend on the value of a.

— Case e = §(K +m) — d: it can be deduced that

L) ()

and it follows that A < 0. Therefore, Re(A;) = Re(A2) = 0 then
larg(A1)| = larg(A2)| = § > af VYa € (0,1) and |arg(A)| = |arg(Xe)| =

T _ T _
5 =af fora=1.

[

— Case §(K +m)—d <e<cK —d: it can be deduced that

rd+e d+e d+e

— - - K — < 0. 24
R () e () o

« If A > 0, A1, A2 € R™ then |arg(\)| = |arg(A2)| = 7 >
af Yo e (0,1].

* If A < 0then A1, Ay € C are conjugated, with Re(\;) = Re(A2) <
0 from and |arg(M)| = |arg(X2)| > § > aF Ya € (0,1].

Theorem 10. The equilibrium Py of system 18:

— locally stable if
*em—d<e< $(K+m)—d, A<O0 and

o ptan” (gdte[(dre—m§—<f<—dre>l)'
e=§(K+m)—dand a € (0,1].
S(K+m)—d<e<cK—dandac(0,1]

*
*

— locally asymptotically stable if
*xem—d<e<§(K+m)—d, A<0 and

24an~1 —
a < Ztan (adt&[(dt&—m>—<f(—d?>l)'
x e = %(KﬂLm)*d and a € (0,1).
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¥ S(K4+m)—d<e<cK—dandoac(0,1].

— locally unstable if
xem—d<e<§(K+m)—d, A>0 and o € (0,1].
*em—d<e< $(K+m)—d, A<O0 and

a > %tan_l <rd+e[(d e_m§_(K_d+€)])'

K ¢ c

F

o

3.5. Example.

{ Cpela] = 0.5z(t) (1 - %) (x(t) — 0.5) — 0.72(t)y(t), (25)

§D [yl = 0.35x(t)y(t) — 0.35y(t) — ey(t).

Using Theorems [7} [8] [0] and [I0} a stability analysis will be performed. It will be
studied the sensibility to the harvest parameter e and the fractional order «.

Different graphics of the problem solutions are presented. Fractional Adams
method in Section [2.4] will be used. For the examples, the value of e will be preset
and the values of a will be varied.

Case e = 0.1
For this value, cm—d < e < §(K+m)—d with A < 0. The following equilibrium
points are obtained: P;(0,0), P2(3,0), P3(0.5,0) and P;(1.2857,0.3207).

085 Predators 08 % Predators
0.6 - 0.6 |
04| } 0.4 1
P 7}
)
0.2+ X 0.2+
\ X
Py P, ; P PYLLp ; P
1 2 3 Preys 1 2 3 Preys
0.8 %
Predators
0.6 +
0.4+
P4‘
0.2 | \
P 3 > ‘ i)
1 2 3 Preys

FIGURE 1. Solutions with e = 0.1 for a = 0.6 (upper left), « = 0.9
(upper right) and o = 1 (lower).
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Figure [1] corresponds to the approximate solutions of problem with a = 0.6,
a =0.9and a = 1. In all of them, the trajectories whose initial conditions are close
to P; tend to Pp, resulting locally asymptotically stable as it has been seen. This
means, if less than Allee’s threshold prey or a sufficiently large number of predators
is considered then it makes sense for the species to go extinct. Regarding the
trajectories whose initial conditions are close to P, the non-existence of predators
makes them tend to Ps, that is, preys reach the carrying capacity. However, if
the initial condition consists of a positive number of predators, the trajectories
move away from Ps, resulting in a locally unstable equilibrium. Regarding the
trajectories whose initial conditions are close to Ps, it can be observed that all of
them move away, resulting in a locally unstable equilibrium. Finally, the difference
with respect to P4 in the images is remarkable. When o = 0.6, trajectories starting
near P, approach it, resulting in a locally asymptotically stable equilibrium. This
represents the coexistence of the species, which makes sense due to the great “time
delay” in the evolution of growth of predators. When o = 0.9, the trajectories move
away from Py being a locally unstable equilibrium, both species becoming extinct.
This behavior also makes sense because, being « large enough, the evolution of
predators is not affected by a very large “time delay”, making them grow almost in
the usual way. Besides the harvest of these is relatively low and therefore the large
number of predators makes both species extinct. When o = 1, the graphic is similar
to a = 0.9, except that the trajectories do not intersect and reach equilibrium faster.

Case e = 0.2625
For this value, e = §(K +m) —d. The following equilibrium points are obtained:
P1(0,0), P»(3,0), P5(0.5,0) and P4(1.75,0.3720).

Predators Predators
0.6 f 0.6 |
04+ % 04+
0.2+ 0.2+
il JP > : L IR Py jP > : 2 s
1 2 3 Preys 1 2 3 Preys

FIGURE 2. Solutions with e = 0.2625 para o = 0.9 (left) and o = 1 (right).

Figure [2] corresponds to the approximate solutions of problem with o = 0.9
and o = 1. In both images, the trajectories that begin with values close to the
equilibrium point P; tend to the same point over time. This shows the asymptotic
stability mentioned in Theorem Also, the trajectories that begin close to the
equilibrium points P, and P3; tend to move away from those points, similar to
their behavior in Figure [T With respect to those trajectories that begin close to
the equilibrium point Py, different behaviors can be observed in each image. In
case a = 0.9 it is seen that these trajectories approach the point P, over time,
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getting closer to it, coinciding with the asymptotic stability mentioned in Theorem
On the other hand, in the case = 1 it is seen that the trajectories with
the same initial conditions as in the previous image tend to reach the equilibrium
P, but do not get close enough. This is a non-asymptotic stability, also seen in
Theorem Here an important difference can be noted: while in the classical
model the coexistence of species is represented by centers, in the fractional model
it is represented by asymptotically stable spirals, enabling to describe other types
of predator-prey situations.

Case e = 0.5
For this value, §(K +m) —d < e < ¢K — d. The following equilibrium points
are obtained: Py(0,0), P2(3,0), P3(0.5,0) v P4(2.4286,0.2624).

0.6 5
Predators
04+
Py
0.2+
Py jP 3 — - L VIR
1 2 3 Preys

FIGURE 3. Solutions with e = 0.5 for o = 0.9.

Figure corresponds to the approximate solutions of problem with a = 0.9,
and it will be the same behavior for all values of 0 < o < 1. Again, the trajectories
close to the points Py, P, and Ps act in a similar way to Figure [I] and Figure 2
With respect to Py it can be seen that it is locally asymptotically stable as predicted
by Theorem However, the way in which the trajectories reach that equilibrium
changes. In the previous graphics the trajectories were in a spiral shape, while now
they are not. This behavior is a consequence of the fact that the eigenvalues found
in the associated jacobian matrix are real, unlike the other cases in which they were
complex.

4. CONCLUSIONS

In this article, a predator-prey model has been analysed with an Allee effect on
the growth of preys and with harvest of predators. This incorporation into the
system made the model more realistic. A fractional order model was considered, in
view of the advantages that this entails. It was explicitly proved that the solution
of this problem exists, it is unique and it is non-negative invariant. Due to the
difficulty of solving nonlinear fractional systems of differential equations, it was
necessary to resort to other methods.

An analysis of the stability of the solutions was done, observing that it depended
on the harvest coefficient of the predators. When the harvest is low enough, the
stability of the solution that represents the coexistence of the species depends on
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the fractional order chosen for their evolution. When an intermediate harvest is
considered, there is a large difference between the fractional case and the classical
case. The coexistence solution is only stable for @ = 1, becoming asymptotically
stable for 0 < a < 1. This situation allows modeling other types of behavior
between species, different from the classical model. When the harvest is large
enough, the fractional and classical models behave similarly. To sum up, it can be
said that differential equations of fractional order are at least as stable as those of
integer order.

All this analytical work could be verified from the numerical treatment. For this
work, the Adams method was used in its fractional version and some examples of
great importance were shown.
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