

Vol. 14(2) July 2023, No. 7
ISSN: 2090-5858.
http://jfca.journals.ekb.eg/

SOME RESULTS ON UNIQUENESS OF ENTIRE FUNCTIONS OF q-SHIFT DIFFERENCE POLYNOMIALS

HUSNA V. AND VEENA

Abstract

This paper is devoted to the uniqueness problem on entire functions whose product of q-shift difference polynomials sharing weight z . We obtain some results that extend the results of Nintu Mandal and Abhijit Shaw [25].

1. Introduction

Let \mathbb{C} be a open complex plane and two functions f and g are nonconstant and meromorphic in \mathbb{C}. In this article we use standard notations of Value Distribution Theory such as $T(r, f), m(r, f), N(r, f)$ ([7], [10], [22]). For $a \in \mathbb{C} \cup\{\infty\}$, if f and g have the same a-point with same multiplicities then f and g share a CM. If we do not take the multiplicities into account then f and g share the value a IM. A meromorphic function a is said to be a small function of f provided $T(r, a)=S(r, f)$ i.e., $T(r, a)=O\{T(r, f)\}$ as $r \rightarrow \infty, r \notin E$. For our convenience we means that $\mathbb{S}(f)$ contains all constant functions and $\widehat{\mathbb{S}}=\mathbb{S}(f) \cup\{\infty\}$. Let f and g be two meromorphic functions defined in the complex plane and a be a value in the extended complex plane.

[^0]Now we say that f and g share that value a CM (counting multiplicities) if the zeros of $f-a$ and $g-a$ coincide in location and multiplicity and say that f and g share the value a IM if zeros of $f-a$ and $g-a$ coincide only in location but not in multiplicity. The counting function of zeros of $f-a$ where m-fold zero is counted m-times if $m \leq p$ and p times if $m>p$ is denoted by $N_{p}(r, a ; f)$ where $p \in \mathbb{Z}^{+}$. We define difference operators for a meromorphic function by $\triangle_{c} f(z)=f(z+c)-f(z)$, $(c \neq 0)$ and $\triangle_{q} f(z)=f(q z)-f(z),(q \neq 0)$.
Definition 1 Let $p(z)=\sum_{i=0}^{m} a_{i} z^{i}$ be a non-zero polynomial, where $a_{i}(i=0,1,2,3, \ldots, m)$ are complex constants and $a_{m} \neq 0$. Let m_{1} is the numbers of single zeros of $p(z)$ and m_{2} is the number of multiple zeros of $p(z)$ and Γ_{1}, Γ_{2} defined by $\Gamma_{1}=m_{1}+m_{2}, \Gamma_{2}=m_{1}+2 m_{2}$ respectively. We denote $\gamma=g c d\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m}\right)$ where $\gamma_{i}=m+1$, if $a_{i}=0, \gamma_{i}=i+1$, if $a_{i} \neq 0$.
Definition 2 ([8], [9]) Let p be a non-negative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{p}(a ; f)$ the set of all a-point of f where an a-point of multiplicity m is counted m times if $m \leq p$ and $p+1$ times if $m>p$. If $E_{p}(a ; f)=E_{p}(a ; g)$ we say that f, g share the value a with weight p.

In 2007, Laine and Yang [11] studied zero distributions of difference polynomials of entire functions and obtained the following results.

Theorem 1 [11] Let f be a transcendental entire function of finite order and ζ be a non-zero complex constant. Then for $n \geq 2, f^{n} f(z+\zeta)$ assumes every non-zero value a in \mathbb{C} infinitely often.
The uniqueness result corresponding to Theorem [1] given by Qi, Yang and Liu [15].

Theorem 2 [15] Let f and g be two transcendental entire functions of finite order, and ζ be a non-zero complex constant, and let $n \geq 6$ be an integer. If $f^{n}(z) f(z+\zeta)$ and $g^{n}(z) g(z+\zeta)$ share 1 CM, then either $f g=t_{1}$ or $f=t_{2} g$ for some constants t_{1} and t_{2} satisfying $t_{1}^{n+1}=t_{2}^{n+1}=1$.

Theorem 3 [20 Let f be a transcendental entire function of finite order, and ζ be a fixed non-zero complex constant. Then for $n>\Gamma_{1}, P(f(z)) f(z+\zeta)-\omega(z)=0$ has infinitely many solutions, where $\omega(z) \in \mathbb{S}(f) \backslash\{0\}$.

Theorem 4 [20] Let f and g be two transcendental entire functions of finite order, ζ be a non-zero complex constant and $n>2 \Gamma_{2}+1$ be an integer. If $p(f) f(z+\zeta)$ and $p(g) g(z+\zeta)$ share $1 C M$, then one of the following results hold:
i) $f=t g$, where $t^{\gamma}=1$;
ii) f and g satisfy the algebraic equation $\Phi(f, g)=0$, where $\Phi\left(\lambda_{1}, \lambda_{2}\right)=$ $p\left(\lambda_{1}\right) \lambda_{1}(z+\zeta)-p\left(\lambda_{2}\right) \lambda_{2}(z+\zeta) ;$
iii) $f=e^{\xi}, g=e^{\Psi}$, where ξ and Ψ are two polynomials and $\xi+\Psi=d$, d is a complex constant satisfying $a_{n}^{2} e^{(n+1) d}=1$.

In 2010, Zhang and Korhonen [23] obtained the following result on value distribution of q-shift difference polynomials of meromorphic functions.

Theorem 5 [23] Let f be a transcendental meromorphic (resp. entire) function of zero order and q be a non-zero complex constant. Then for $n \geq 6$ (resp. $n \geq 2$) $f(z)^{n} f(q z)$ assume every non-zero value $c \in \mathbb{C}$ infinitely often.

Theorem 6 [23] Let f and g be two transcendental meromorphic functions of zero order. Suppose that q is a non-zero complex constant and $n \geq 6$ is an integer. If $f(z)^{n}(f(z)-1) f(q z)$ and $g(z)^{n}(g(z)-1) g(q z)$ share 1 CM , then $f \equiv g$.

In 2015, Xu , Liu and Cao [19] obtained the following result for a q -shift of a meromorphic function.

Theorem 7 [19] Let f be a zero order transcendental meromorphic (resp. entire) function, $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. Then for any positive integer $n>\Gamma_{1}+4$ (resp. for entire $\left.n>\Gamma_{1}\right), p(f(z)) f(q z+\zeta)=\Phi(z)$ has infinitely many solutions, where $\Phi(z) \in \mathbb{S}(f) \backslash\{0\}$.

Theorem 8 [19] Let f and g be two transcendental entire functions of zero order and let $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. If $p(f(z)) f(q z+\zeta)$ and $p(g(z)) g(q z+\zeta)$ share $1 C M$ and $n>2 \Gamma_{2}+1$ be an integer, then one of the following result holds:
i) $f=t g$ for a constant t such that $t^{\gamma}=1$;
ii) f and g satisfy the algebraic equation $\Phi(f, g)=0$, where $\Phi\left(\lambda_{1}, \lambda_{2}\right)=$ $p\left(\lambda_{1}\right) \lambda_{1}(q z+\zeta)-p\left(\lambda_{2}\right) \lambda_{2}(q z+\zeta) ;$
iii) $f g=d$, where d is a complex constant satisfying $a_{n}^{2} d^{n+1} \equiv 1$.

In 2001, I. Lahiri ([8], [9]) proved the following result by considering the concept of weighted sharing.

Theorem 9 [8] 9] Let f and g be two transcendental entire functions of zero order and let $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. If $E_{l}(1 ; p(f(z)) f(q z+\zeta))=$ $E_{l}(1 ; p(g(z)) g(q z+\zeta))$ and l, m, n are integers satisfy one of the following conditions:
i) $l \geq 3$; $n>2 \Gamma_{2}+1$;
ii) $l=2 ; n>\Gamma_{1}+2 \Gamma_{2}+2-\alpha$;
iii) $l=1 ; n>2 \Gamma_{1}+2 \Gamma_{2}+3-2 \alpha$;
iv) $l=0 ; n>3 \Gamma_{1}+2 \Gamma_{2}+4-3 \alpha$.

Then the conclusions of Theorem 1 holds, where $\alpha=\min \{\Theta(0, f), \Theta(0, g)\}$.
In 2016, Sahoo and Biswas [18] proved the following Theorem.
Theorem 10 [18] Let f and g be two transcendental entire functions of zero order and let $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. If $E_{l}\left(1 ;(p(f(z)) f(q z+\zeta))^{(k)}\right)=$ $E_{l}\left(1 ;(p(g(z)) g(q z+\zeta))^{(k)}\right)$ and l, m, n are integers satisfy one of the following conditions:
i) $l \geq 2 ; n>2 \Gamma_{2}+2 k m_{2}+1$;
ii) $l=1$; $n>\frac{1}{2}\left(\Gamma_{1}+4 \Gamma_{2}+5 k m_{2}+3\right)$;
iii) $l=0 ; n>3 \Gamma_{1}+2 \Gamma_{2}+5 k m_{2}+4$;

Then one of the following results holds:
i) $f=t g$ for a constant t such that $t^{\gamma}=1$;
ii) f and g satisfy the algebraic equation $\Phi(f, g)=0$, where $\Phi\left(\lambda_{1}, \lambda_{2}\right)=$ $p\left(\lambda_{1}\right) \lambda_{1}(q z+\zeta)-p\left(\lambda_{2}\right) \lambda_{2}(q z+\zeta) ;$
iii) $f g=d$, where d is a complex constant satisfying $a_{n}^{2} d^{n+1} \equiv 1$.

In 2020, Nintu Mandal and Abhijit Shaw [25] proved the following result.

Theorem 11 [25] Let f and g be two transcendental entire functions of zero order and let $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. If $E_{l}\left(z ;(p(f) f(q z+\zeta))^{(k)}\right)=$ $E_{l}\left(z ;(p(g) g(q z+\zeta))^{(k)}\right)$ and l, m, n are integers satisfy one of the following conditions:
i) $l \geq 2 ; n>2 \Gamma_{2}+2 k m_{2}+1$;
ii) $l=1$; $n>\frac{1}{2}\left(\Gamma_{1}+4 \Gamma_{2}+5 k m_{2}+3\right)$;
iii) $l=0 ; n>3 \Gamma_{1}+2 \Gamma_{2}+5 k m_{2}+4$;

Then one of the following results holds:
i) $f=t g$ for a constant t such that $t^{\gamma}=1$;
ii) f and g satisfy the algebraic equation $\Phi(f, g)=0$, where $\Phi\left(\lambda_{1}, \lambda_{2}\right)=$
$p\left(\lambda_{1}\right) \lambda_{1}(q z+\zeta)-p\left(\lambda_{2}\right) \lambda_{2}(q z+\zeta) ;$
iii) $f(z)=\mu_{1} e^{\frac{u}{2} z^{2}+v z}$ and $g(z)=\frac{\mu_{1}}{\mu} e^{-}\left(\frac{u}{2} z^{2}+v z\right)$ where μ_{1}, μ, u, v are complex constant and not equal to zero. If $A=(-1) a_{n}^{2} \mu^{n+1}$, then $u^{2}=\frac{1}{A\left(n+q^{2}\right)^{2}}$ and $v^{2}=\frac{\zeta^{2} q^{2}}{(n+q)^{2}\left(n+q^{2}\right)^{2}}$.

Question 1. What happens if $(p(f) f(q z+\zeta))^{(k)}$ is replaced by $\left(p(f) f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}$ in Theorem 1?
To answer the above question affirmatively, we prove the following results which is the main results of this article.

Theorem 12. Let f and g be two transcendental entire functions of zero order and let $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. If $E_{l}\left(z ;\left(p(f) f^{n}(z) \prod_{j=1}^{d} f\left(q_{j} z+\right.\right.\right.$ $\left.\left.\left.\zeta_{j}\right)^{v_{j}}\right)^{(k)}\right)=E_{l}\left(z ;\left(p(g) g^{n}(z) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}\right)$ and l, m, n are integers satisfy one of the following conditions:
i) $l \geq 2$; $n>2 \Gamma_{1}+2 k m_{2}+2 d+2-\sigma-m$;
ii) $l=1 ; n>\frac{1}{2}\left(\Gamma_{1}+4 \Gamma_{2}+5 k m_{2}+3 \sigma+2 m\right)$;
iii) $l=0 ; n>3 \Gamma_{1}+2 \Gamma_{2}+5 k m_{2}+5 d+5-m-\sigma$;

Then one of the following results holds:
i) $f=t g$ for a constant t such that $t^{\gamma}=1$;
ii) f and g satisfy the algebraic equation $\Phi(f, g)=0$, where

$$
\Phi\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}^{n} p\left(\lambda_{1}\right) \prod_{j=1}^{d} f\left(q_{j} \lambda_{1}+\zeta_{j}\right)^{s_{j}}-\lambda_{2}^{n} p\left(\lambda_{2}\right) \prod_{j=1}^{d} g\left(q_{j} \lambda_{2}+\zeta_{j}\right)^{s_{j}}
$$

iii) $f(z)=\mu_{1} e^{\frac{u}{2} z^{2}+v z}$ and $g(z)=\frac{\mu_{1}}{\mu} e^{-}\left(\frac{u}{2} z^{2}+v z\right)$ where μ_{1}, μ, u, v are complex constant and not equal to zero. If $A=(-1) a_{m}^{2} e^{(n+m+\sigma) c}=$ $(-1) a_{m}^{2} \mu^{n+m+\sigma}$, then $u^{2}=\frac{1}{A\left[(m+n)+\sigma q_{j}^{2}\right]^{2}}$ and $v^{2}=\frac{\zeta_{j}^{2} q_{j}^{2} \sigma^{2}}{A\left[(m+n)+\sigma q_{j}^{2}\right]^{2}\left[(m+n)+\sigma q_{j}\right]^{2}}$.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in \mathbb{C}. We denote by H the function as follows:

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) .
$$

Lemma 1. [22] Let f be a non-constant meromorphic function, and $P(f)=\sum_{i=0}^{m} a_{i} f^{i}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{m}$ are complex constants and $a_{m} \neq 0$. Then

$$
T(r, P(f))=m T(r, f)+S(r, f)
$$

Lemma 2. [24] Let f be a non-constant meromorphic function, and $p, k \in \mathbb{Z}^{+}$. Then

$$
\begin{gather*}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) . \tag{1}\\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f)
\end{gather*}
$$

Lemma 3. [9] Let f and g be two non-constant meromorphic functions. If $E_{2}(1 ; f)=E_{2}(1 ; g)$, then one of the following relation holds:
i) $T(r) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+N_{2}(r, f)+N_{2}(r, g)+S(r)$;
ii) $f=g$;
iii) $f g=1$.
where $T(r)=\max \{T(r, g), T(r, f)\}$ and $S(r)=o\{T(r)\}$.
Lemma 4. [1] Let F and G be two non-constant meromorphic functions such that $E_{1}(1 ; F)=E_{1}(1 ; G)$, and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+\frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+\frac{1}{2} \bar{N}(r, F) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

and we can deduce same result for $T(r, G)$.
Lemma 5. [1] Let F and G be two non constant meromorphic functions which are share $1 I M$ and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+2 \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right) \\
& +2 \bar{N}(r, F)+\bar{N}(r, G)+S(r, F)+S(r, G)
\end{aligned}
$$

Lemma 6. 19] Let f be a transcendental meromorphic function of order zero and q, ζ two non-zero complex constants. Then

$$
\begin{aligned}
& T(r, f(q z+\zeta))=T(r, f(z))+S(r, f) \\
& N(r, f(q z+\zeta))=N(r, f(z))+S(r, f)
\end{aligned}
$$

$$
\begin{aligned}
& N\left(r, \frac{1}{f(q z+\zeta)}\right)=N\left(r, \frac{1}{f(z)}\right)+S(r, f) ; \\
& \bar{N}(r, f(q z+\zeta))=\bar{N}(r, f(z))+S(r, f) ; \\
& \bar{N}\left(r, \frac{1}{f(q z+\zeta)}\right)=\bar{N}\left(r, \frac{1}{f(z)}\right)+S(r, f) .
\end{aligned}
$$

Lemma 7. [19] Let f be a transcendental meromorphic function of order zero and $q(\neq 0), \zeta$ two non-zero complex constants. Then $F_{1}=f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}} \quad$ and $\quad G_{1}=g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}$. $F=\frac{\left(F_{1}\right)^{(k)}}{z}, G=\frac{\left(G_{1}\right)^{(k)}}{z}$. Then $T\left(r, F_{1}\right)=(n+m+\sigma) T(r, f)+S(r, f)$. In addition, if it is a transcendental entire function of zero order, then $T\left(r, F_{1}\right)=T\left(r, f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)=(n+m+\sigma) T(r, f)+S(r, f)$ where $\sigma=\sum_{j=1}^{d} v_{j}$.
Lemma 8. Let f and g be two entire functions q, ζ complex constants and $q \neq 0 ; n, k$ are two positive integers and let $F_{1}=f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\right.$ $\left.\zeta_{j}\right)^{v_{j}}$ and $G_{1}=g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}} . F=\frac{F_{1}^{(k)}}{z}, G=\frac{G_{1}^{(k)}}{z}$.
If there exists two non-zero constants c_{1} and c_{2} such that $\bar{N}\left(r, c_{1} ; F\right)=$ $\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}\left(r, c_{2} ; G\right)=\bar{N}\left(r, \frac{1}{F}\right)$, then $n \leq 2 \Gamma_{1}+2 k m_{2}+2 d+2-\sigma-m$.

Proof. Let $F_{1}=f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}$ and $G_{1}=g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\right.$ $\left.\zeta_{j}\right)^{v_{j}}$ and $F=\frac{F_{1}^{(k)}}{z}, G=\frac{G_{1}^{(k)}}{z}$.
By the Second main theorem of Nevanlinna, we have
$T(r, F) \nleftarrow 3 \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, c_{1} ; F\right)+S(r, F) \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, F)$.

Using equations (1), (2), (3), Lemma 2, Lemma 2 and Lemma 2, we get

$$
\begin{aligned}
(n+m+\sigma) T(r, f) & \leq T(r, F)-\bar{N}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{F_{1}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+N_{k+1}\left(r, \frac{1}{F_{1}}\right)+S(r, f) \\
& \leq \bar{N}_{k+1}\left(r, \frac{1}{F_{1}}\right)+N_{k+1}\left(r, \frac{1}{G_{1}}\right)+S(r, f)+S(r, g) \\
& \leq \bar{N}_{k+1}\left(r, \frac{1}{f^{n}}\right)+\bar{N}_{k+1}\left(r, \frac{1}{g^{n}}\right)+N_{k+1}\left(r, \frac{1}{p(f)}\right) \\
& +N_{k+1}\left(r, \frac{1}{p(g)}\right)+N_{k+1}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}}\right) \\
& +N_{k+1}\left(r, \frac{1}{\prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

This implies,

$$
\begin{equation*}
(n+m+\sigma) T(r, f) \leq\left(1+m_{1}+m_{2}+k m_{2}+d\right)\{T(r, f)+T(r, g)\}+S(r, f)+S(r, g) . \tag{4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(n+m+\sigma) T(r, g) \leq\left(1+m_{1}+m_{2}+k m_{2}+d\right)\{T(r, f)+T(r, g)\}+S(r, f)+S(r, g) . \tag{5}
\end{equation*}
$$

In view of equation (4) and (5), we have,
$\left(n+m+\sigma-2 m_{1}-2 m_{2}-2 k m_{2}-2 d-2\right)\{T(r, f)+T(r, g)\} \leq S(r, f)+S(r, g)$.
which gives $n \leq 2 \Gamma_{1}+2 k m_{2}+2 d+2-\sigma-m$. This proves the Lemma.
Lemma 9. Let f and g be two transcendental entire functions of zero order and let $q \in \mathbb{C} \backslash\{0\}, \zeta \in \mathbb{C}$. If $f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}=$ $g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}$. Then one of the following results holds:
i) $f=t g$ for a constant t such that $t^{\gamma}=1$;
ii) f and g satisfy the algebraic equation $\Phi(f, g)=0$, where

$$
\Phi\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}^{n} p\left(\lambda_{1}\right) \prod_{j=1}^{d} \lambda_{1}\left(q_{j} z+\zeta_{j}\right)^{v_{j}}-\lambda_{2}^{n} p\left(\lambda_{2}\right) \prod_{j=1}^{d} \lambda_{2}\left(q_{j} z+\zeta_{j}\right)^{v_{j}}
$$

Proof. This lemma can be proved easily in the line of the proof of the Theorem 11 [19.

3. Proof of the Main Result

Let $F_{1}=f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}$ and $G_{1}=g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}$
then $E_{1}\left(z ; F_{1}^{(k)}\right)=E_{1}\left(z ; G_{1}^{(k)}\right)$. Again let $F=\frac{F_{1}^{(k)}}{z}$ and $G=\frac{G_{1}^{(k)}}{z}$. Then F and G are transcendental meromorphic functions satisfy $E_{1}(1 ; F)=$ $E_{1}(1 ; G)$. Now with help of lemma 2 and using (1) we have

$$
\begin{aligned}
N_{2}\left(r, \frac{1}{F}\right) & \leq N_{2}\left(r, \frac{1}{\frac{F_{1}^{(k)}}{z}}\right)+S(r, f) \\
& \leq T\left(r, F_{1}^{(k)}\right)-T\left(r, F_{1}\right)+N_{k+2}\left(r, \frac{1}{F_{1}}\right)+S(r, f) \\
& \leq T(r, F)-(n+m+\sigma) T(r, f)+N_{k+2}\left(r, \frac{1}{F_{1}}\right)+S(r, f)
\end{aligned}
$$

Hence,
(6) $(n+m+\sigma) T(r, f) \leq T(r, F)-N_{2}\left(r, \frac{1}{F}\right)+N_{k+2}\left(r, \frac{1}{F_{1}}\right)+S(r, f)$.
we can show from (2)

$$
\begin{align*}
& N_{2}\left(r, \frac{1}{F}\right) \leq N_{2}\left(r, \frac{1}{F^{(k)}}\right)+S(r, f) . \\
& \quad \leq N_{k+2}\left(r, \frac{1}{F_{1}}\right)+S(r, f) \tag{7}
\end{align*}
$$

Now following three cases will be discuss separately.
Case I. Let $l \geq 2$. If possible we assume that (i) of lemma 2 holds. We can deduce from (6) with help of (7)

$$
\begin{aligned}
(n+m+\sigma) T(r, f) & \leq N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+N_{k+2}\left(r, \frac{1}{F_{1}}\right) \\
& +S(r, f)+S(r, g) \\
& \leq N_{k+2}\left(r, \frac{1}{F_{1}}\right)+N_{k+2}\left(r, \frac{1}{G_{1}}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

$$
\begin{equation*}
(n+m+\sigma) T(r, f) \leq\left(1+m_{1}+2 m_{2}+k m_{2}+d\right)(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{8}
\end{equation*}
$$

Same we can show for $T(r, g)$ i.e.,

$$
\begin{equation*}
(n+m+\sigma) T(r, g) \leq\left(1+m_{1}+2 m_{2}+k m_{2}+d\right)(T(r, f)+T(r, g))+S(r, f)+S(r, g) \tag{9}
\end{equation*}
$$

We can obtain from (8) and (9)

$$
\left(n+m+\sigma-2 m_{1}-4 m_{2}-2 k m_{2}-2 d-2\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

which contradict the fact $n>2 \Gamma_{2}+2 k m_{2}+2 d-\sigma-m+2$. Then by Lemma 2 we claim that either $F G=1$ or $F=G$.
Let $F G=1$. Then,

$$
\begin{equation*}
\left(f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}\left(g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}=z^{2} \tag{10}
\end{equation*}
$$

If possible, let $p(z)=0$ has m roots $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}$ with multiplicity $n_{1}, n_{2}, n_{3}, \ldots, n_{m}$. Then we have $n_{1}+n_{2}+n_{3}+\ldots+n_{m}=m$. Now

$$
\begin{align*}
& \left.\left[a_{m}\left(f-\alpha_{1}\right)^{n_{1}} \ldots\left(f-\alpha_{m}\right)^{n_{m}} f^{n} \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)\right]^{(k)} \\
& \left.\left[a_{n}\left(g-\alpha_{1}\right)^{n_{1}} \ldots\left(g-\alpha_{m}\right)^{n_{m}} g^{n} \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)\right]^{(k)}=z^{2} . \tag{11}
\end{align*}
$$

Since f and g are entire functions from (11), we see that $\alpha_{1}=\alpha_{2}=$ $\ldots=\alpha_{m}=0$. Also, we can say that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are picard's exceptional values. By picard's theorem of entire function, we have at least three picard's exceptional values of f and if $m \geq 2$ and $\alpha_{i} \neq$ $0(i=1,2, \ldots, m)$, then we obtain a contradiction. Next we assume that $p(z)=0$ has only one root. Then $p(f)=a_{m}(f-a)^{m}$ and $p(g)=$ $a_{m}(g-a)^{m}$, where a is any complex constant. Now from 10) we can write

$$
\begin{equation*}
\left[f^{n} a_{m}(f-a)^{m} \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right]^{(k)}\left[g^{n} a_{m}(g-a)^{m} \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right]^{(k)}=z^{2} \tag{12}
\end{equation*}
$$

By picard's theorem and as f and g are transcendental entire functions , then we can say that $f-a=0$ and $g-a=0$ do not have zeros. Then, we obtain that $f(z)=e^{\alpha(z)}+a$ and $g(z)=e^{\beta(z)}+a, \alpha(z)$, $\beta(z)$ being non constant polynomials. From (12), we also see that

$$
\begin{equation*}
\left[a_{m} e^{n \alpha(z)} e^{m \alpha(z)} \prod_{j=1}^{d} e^{\left(q_{j} z+\zeta_{j}\right)^{v_{j}}}\right]^{(k)}\left[a_{m} e^{n \beta(z)} e^{m \beta(z)} \prod_{j=1}^{d} e^{\left(q_{j} z+\zeta_{j}\right)^{v_{j}}}\right]^{k}=z^{2} \tag{13}
\end{equation*}
$$

If $k=0$, then from (13) we have

$$
a_{m}^{2} e^{(n+m)(\alpha(z)+\beta(z))} \prod_{j=1}^{d} e^{(\alpha+\beta)\left(q_{j} z+\zeta_{j}\right)^{v_{j}}}=z^{2} .
$$

which is a contradiction as for no value of $\alpha(z)$ and $\beta(z)$ we can compare both side.
If $k=1$, then from (13) we have

$$
\left[a_{m} e^{m \alpha(z)+n \alpha(z)+\sigma \alpha\left(q_{j} z+\zeta_{j}\right)}\left(m \alpha^{\prime}(z)+n \alpha^{\prime}(z)+\sigma q_{j} \alpha^{\prime}\left(q_{j} z+\zeta_{j}\right)\right)\right]
$$

$$
\begin{equation*}
\times\left[a_{m} e^{m \beta(z)+n \beta(z)+\sigma \beta\left(q_{j} z+\zeta_{j}\right)}\left(m \beta^{\prime}(z)+n \beta^{\prime}(z)+\sigma q_{j} \beta^{\prime}\left(q_{j} z+\zeta_{j}\right)\right)\right]=z^{2} \tag{14}
\end{equation*}
$$

i.e
$a_{m}^{2} e^{(m+n)(\alpha+\beta)+\sigma \alpha\left(q_{j} z+\zeta_{j}\right)+\sigma \beta\left(q_{j} z+\zeta_{j}\right)}$
$\left.\left.\times\left[(m+n) \alpha^{\prime}(z)+\sigma q_{j} \alpha^{\prime}\left(q_{j} z+\zeta_{j}\right)\right)(m+n) \beta^{\prime}(z)+\sigma q_{j} \beta^{\prime}\left(q_{j} z+\zeta_{j}\right)\right)\right]=z^{2}$,
Now the relation can be hold if $\alpha+\beta=c ; c$ is complex constant. Then $\alpha^{\prime}+\beta^{\prime}=0$, i.e. $\beta^{\prime}=-\alpha^{\prime}$. Then from (14) we have

$$
\begin{equation*}
(-1) a_{m}^{2} e^{(n+m+\sigma) c}\left(m \alpha^{\prime}(z)+n \alpha^{\prime}(z)+\sigma q_{j} \alpha^{\prime}\left(q_{j} z+\zeta_{j}\right)\right)^{2}=z^{2} \tag{15}
\end{equation*}
$$

Now if $\alpha^{\prime}(z)$ be one degree polynomials, i.e $\alpha^{\prime}(z)=u z+v$, then $\alpha^{\prime}\left(q_{j} z+\right.$ $\left.\zeta_{j}\right)=u q_{j} z+u \zeta+v$. Let $A=(-1) a_{m}^{2} e^{(n+m+\sigma) c}=(-1) a_{m}^{2} \mu^{(n+m+\sigma)}$, where $\mu=e^{c}$. Then we can show from (15) that $u^{2}=\frac{1}{A\left[(m+n)+\sigma q_{j}^{2}\right]^{2}}$ and $v^{2}=\frac{\zeta_{j}^{2} q_{j}^{2} \sigma^{2}}{A\left[(m+n)+\sigma q_{j}^{2}\right]^{2}\left[(m+n)+\sigma q_{j}\right]^{2}}$. Now $\alpha^{\prime}=u z+v$ i.e $\alpha=\frac{u}{2} z^{2}+v z+w$, then $f(z)=\mu_{1} e^{\frac{u}{2} z^{2}+v z}$ and $g(z)=\frac{\mu}{\mu_{1}} e^{-\left(\frac{u}{2} z^{2}+v z\right)}$ where $\mu_{1}=e^{w}$.

If $k \geq 2$, then we get

$$
\left[a_{m} e^{(n+m) \alpha(z)+\sigma \alpha\left(q_{j} z+\zeta_{j}\right)}\right]^{(k)}=z^{2} a_{m} e^{(n+m) \alpha(z)+\sigma \alpha\left(q_{j} z+\zeta_{j}\right)} p\left(\alpha^{\prime} \alpha_{\zeta}^{\prime}, \ldots, \alpha^{(k)} \alpha_{\zeta_{j}}^{(k)}\right)
$$

where $\alpha_{\zeta_{j}}=\alpha\left(q_{j} z+\zeta_{j}\right)$. Obviously, $p\left(\alpha^{\prime} \alpha_{\zeta}^{\prime}, \ldots, \alpha^{(k)} \alpha_{\zeta_{j}}^{(k)}\right)$ has infinitely many zeros, and which contradict with (13).

Now let $F=G$. Then

$$
\frac{\left(f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}}{z}=\frac{\left(g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}}{z}
$$

That is

$$
\left(f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v j}\right)^{(k)}=\left(g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}
$$

Integrating one time we have

$$
\left(f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v j}\right)^{(k-1)}=\left(g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k-1)}+\eta_{k-1}
$$

where η_{k-1} is a constant. If $\eta_{k-1} \neq 0$ using Lemma 2 we say that $n \leq 2 \Gamma_{1}+2 k m_{2}+2 d-\sigma-m+2$, which contradict with the fact that $n>$ $2 \Gamma_{2}+2 k m_{2}+2 d-\sigma-m+2 .\left(\Gamma_{2} \geq \Gamma_{1}\right)$. Hence $\eta_{k-1}=0$. Now repeating the process upto k - times, we can establish $f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}=$ $g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}$. Hence by Lemma 2 we have either $f=t g$ for a constant t such that $t^{\gamma}=1$, or f and g satisfy the algebraic equation $\Phi(f, g)=0$ where,

$$
\Phi\left(\lambda_{1}, \lambda_{2}\right)=\lambda_{1}^{n} p\left(\lambda_{1}\right) \prod_{j=1}^{d} f\left(q_{j} \lambda_{1}+\zeta_{j}\right)^{v_{j}}-\lambda_{2}^{n} p\left(\lambda_{2}\right) \prod_{j=1}^{d} g\left(q_{j} \lambda_{2}+\zeta_{j}\right)^{v_{j}}
$$

Case II. Let $l=1$ and $H \not \equiv 0$. Using Lemma 2 and equation (7) we can establish from (6)

$$
\begin{aligned}
(n+m+\sigma) T(r, f) & =N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+\frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right) \\
& +\frac{1}{2} \bar{N}(r, F)+N_{k+2}\left(r, \frac{1}{F_{1}}\right)+S(r, f)+S(r, g) \\
& \leq N_{k+2}\left(r, \frac{1}{F_{1}}\right)+N_{k+2}\left(r, \frac{1}{G_{1}}\right)+\frac{1}{2} N_{k+1}\left(r, \frac{1}{F_{1}}\right) \\
& +S(r, f)+S(r, g) \\
& \leq\left(1+m_{1}+(k+2) m_{2}+d\right) T(r, f) \\
& +\frac{1}{2}\left(1+m_{1}+(k+1) m_{2}+d\right) T(r, f) \\
& +\left(1+m_{1}+(k+2) m_{2}+d\right) T(r, g)+S(r, f)+S(r, g) \\
& \leq \frac{1}{2}\left(3 m_{1}+(3 k+5) m_{2}+3 d+3\right) T(r, f) \\
& +\left(1+m_{1}+(k+2) m_{2}+d\right) T(r, g)+S(r, f)+S(r, g) \\
& \leq \frac{1}{2}\left(5 m_{1}+(5 k+9) m_{2}+5 d+5\right) T(r)+S(r) .
\end{aligned}
$$

where $T(r)$ and $S(r)$ two inequalities, defined in Lemma 2. Similarly we can show that

$$
(n+m+\sigma) T(r, g) \leq \frac{1}{2}\left(5 m_{1}+(5 k+9) m_{2}+5 d+5\right) T(r)+S(r)
$$

we have from two inequalities,

$$
\left(n-\frac{5 m_{1}+(5 k+9) m_{2}+5 d+5-2 m-2 \sigma}{2}\right) T(r) \leq S(r)
$$

which contradict the fact $n>\frac{\Gamma_{1}+4 \Gamma_{2}+5 k m_{2}+3 \sigma+2 m}{2}$.
Now, let $H \equiv 0$, i.e., $\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)=0$. After two times integration we have

$$
\begin{equation*}
\frac{1}{F-1}=\frac{A}{G-1}+B \tag{16}
\end{equation*}
$$

where A, B are constants and $A \neq 0$. From (14) it is clear that F, G share the value 1 CM and then they share $(1,2)$ and hence

$$
\left(f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)} \text { and }\left(g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)} \text { share }
$$

$(z, 2)$. Hence we have $n>2 \Gamma_{2}+2 k m_{2}+1$. Now we study the following cases.
Subcase I. Let $B \neq 0$ and $A=B$. Then from (14) we get

$$
\begin{equation*}
\frac{1}{F-1}=\frac{B G}{G-1}, \tag{17}
\end{equation*}
$$

If $B=-1$, then from (17), $F G=1$ i.e.,
$\left(f^{n} p(f) \prod_{j=1}^{d} f\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}\left(g^{n} p(g) \prod_{j=1}^{d} g\left(q_{j} z+\zeta_{j}\right)^{v_{j}}\right)^{(k)}=z^{2}$ then
we obtain the same result as in Case I.
Now if $B \neq-1$. Then from (17), we have, $\frac{1}{F}=\frac{B G}{(1+B) G-1}$ and then, $\bar{N}\left(r, \frac{1}{1+B} ; G\right)=\bar{N}\left(r, \frac{1}{F}\right)$.
Now from the second main theorem of Nevalinna, we get using (1) and (3) that

$$
\begin{aligned}
T(r, G) & =\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{1+B} ; G\right)+\bar{N}(r, G)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{F}+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, G)+S(r, G)\right. \\
& \leq N_{k+1}\left(r, \frac{1}{F_{1}}\right)+T(r, G)+N_{k+1}\left(r, \frac{1}{G_{1}}\right)-(n+m+\sigma) T(r, g)+S(r, g)
\end{aligned}
$$

This gives,
$(n+m+\sigma) T(r, g) \leq\left(1+m_{1}+(k+1) m_{2}+d\right)(T(r, f)+T(r, g))+S(r, g)$,
we can show same result for $T(r, f)$ i.e.,
$(n+m+\sigma) T(r, f) \leq\left(1+m_{1}+(k+1) m_{2}+d\right)(T(r, f)+T(r, g))+S(r, f)$,
Thus, we obtain
$\left(n+m+\sigma-2-2 m_{1}-2(k+1) m_{2}-2 d\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)$,
a contradiction as $n>2 \Gamma_{1}+2 k m_{2}+2 d-m-\sigma+2$.
Subcase II. Let $A \neq 0$ and $B=0$. Now from (16) we have $F=\frac{G+A-1}{A}$ and $G=A F-(A-1)$. If $A \neq 1$, we have $\bar{N}\left(r, \frac{A-1}{A} ; F\right)=\bar{N}\left(r, \frac{1}{G}\right)$ and $\bar{N}(r, 1-A ; G)=\bar{N}\left(r, \frac{1}{F}\right)$. Then by Lemma 2, we have $n \leq$ $2 \Gamma_{1}+2 k m_{2}+2 d-\sigma-m+2$, which is a contradiction. Thus $A=1$ and $F=G$, then the result follows from the Case I.

Subcase III. Let $A \neq 0$ and $A \neq B$. Then from (16), we obtain
$F=\frac{(B+1) G-(B-A+1)}{B G+(A-B)}$ and therefore $\bar{N}\left(r, \frac{B-A+1}{B+1} ; G\right)=\bar{N}\left(r, \frac{1}{F}\right)$. Proceeding similarly as in Subcase I, we can get a contradiction.
Case III. Let $l=0$ and $H \not \equiv 0$, we can establish from (6) after using Lemma 2 and (7)

$$
\begin{aligned}
(n+m+\sigma) T(r, f) & =N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+2 \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right. \\
& +2 \bar{N}(r, F)+\bar{N}(r, G)+N_{k+2}\left(r, \frac{1}{F_{1}}\right)+S(r, f)+S(r, g) \\
& \leq N_{k+2}\left(r, \frac{1}{F_{1}}\right)+N_{k+2}\left(r, \frac{1}{G_{1}}\right)+2 N_{k+1}\left(r, \frac{1}{F_{1}}\right) \\
& +N_{k+1}\left(r, \frac{1}{G_{1}}\right)+S(r, f)+S(r, g) \\
& \leq\left(3+3 m_{1}+(3 k+4) m_{2}+3 d\right) T(r, f) \\
& +\left(2 m_{1}+(2 k+3) m_{2}+2+2 d\right) T(r, g) \\
& +S(r, f)+S(r, g) \\
& \leq\left(5 m_{1}+(5 k+7) m_{2}+5 d+5\right) T(r)+S(r),
\end{aligned}
$$

Similarly it follows that $(n+m+\sigma) T(r, g) \leq\left(5 m_{1}+(5 k+7) m_{2}+\right.$ $5 d+5) T(r)+S(r)$. From the above two inequalities we have $(n+m+$ $\left.\sigma-5 m_{1}-(5 k+7) m_{2}-5 d-5\right) T(r) \leq S(r)$, which contradict with our assumption that $n>3 \Gamma_{1}+2 \Gamma_{2}+5 k m_{2}+5 d-m-\sigma+5$. Therefore $H=0$ and then proceeding in similar manner as Case II, we get the results. This complete the proof of the theorem.

References

[1] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci. 22 (2005), 3587-3598.
[2]] D. C. Barnett, R. G. Halburd, R. J. Korhonen, W. Moegan, Nevanlinna theory for the q-diffenence operator and meromorphic solutions of q-difference equations, Proc. R. Soc. Edinb., Sect. A, Math. 137 (2007), 457- 474.
[3] Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristics of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), 105-129.
[4] S. Kumar and M. Saini, On zeros and growth of solutions of second order linear differential equations, Commun. Korean Math. Soc. 35 (2020), no. 1, 229-241.
[5] R. G. Halburd, R. J. Korhonen, Diffenence analogue of the lamma on the logarithmic derivative with application to difference equations, J. Math. Anal. Appl. 314 (2006), 477-487.
[6] R. G. Halburd, R. J. Korhonen, Nevanlinna theory of difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), 463-478.
[7] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[8] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193-206.
[9] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl. 46 (2001), 241-253.
[10] I. Laine, Nevanlinna theory and Complex differential equations, Walter de Gruyter, Berlin/Newyork (1993)
[11] I. Laine, C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 148-151
[12] I. Lahiri and K. Sinha, Linear differential polynomials sharing a set of the roots of unity, Commun. Korean Math. Soc. 35 (2020), no. 3, 773-787.
[13] K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl. 359 (2009), 384-393.
[14] K. Liu, L. Z. Yang, Value distribution of the difference operator, Arch. Math. 92 (2009), 270-278.
[15] X. G. Qi, L. Z. Yang, K. Liu, uniqueness and periodicity of meromorphic functions concerning the difference operator, Computers Math. Appl. 60 (2010), 1739-1746.
[16] S. S. Bhoosnurmath, B. Chakraborty and H. M. Srivastava, A note on the value distribution of differential polynomials, Commun. Korean Math. Soc. 34 (2019), no. 4, 1145-1155.
[17] P. Sahoo, Unicity theorem for entire functions sharing one value, Filomat, 27 (2013), 797-809.
[18] P. Sahoo, G. Biswas, Value distribution and uniqueness of q-shift difference polynomials, Novi Sad J. Math. 46 (2) (2016), 33-44.
[19] Harina P. W and Husna V., Results on uniqueness of product of certain type of difference polynomials, Advanced Studies in Contemproraty Mathematics,Vol. 31 (2021),no.1,67-74.
[20] L. Xudan, W. C. Lin, Value sharing results for shifts of meromorphic functions, J. Math. Anal. Appl. 377 (2011), 441-449.
[21] C. C. Yang, X. H. Hua, Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406.
[22] H. X. Yi, C. C. Yang, Uniqueness theory of meromorphic functions, Science Press, Beijing (1995).
[23] J. L. Zhang, R. J. Korhonen, On the Nevanlinna charanteristics of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), 537-544.
[24] J. L. Zhang, L. Z. Yang, Some results related to a conjecture of R. Bruck. J. Inequal. Pure Appl. Math. 8 (2007), Article ID 18.
[25] N. Mandal, A. Shaw,Uniqueness and variable sharing of q-shift difference polynomials of entire functions.J.Math.Comput.Sci.10(2020),No.4,778-792
[26] V. Husna and Veena, Results on meromorphic and entire functions sharing CM and IM with their difference operators, J. Math. Comput. Sci.11(2021), No.4, 5012-5030.
[27] V. Husna, Some results on uniqueness of meromorphic functions concerning differential polynomials, J. Anal. 29 (2021), no. 4, 1191-1206.
[28] V. Husna, S. Rajeshwari and S. H. Naveenkumar, Results on uniqueness of product of certain type of shift polynomials, Poincare J. Anal. Appl. 7 (2020), no. 2, 197-210.
[29] Husna V., Rajeshwari S. and Veena, Some results on uniqueness of certain types of difference polynomials, Italian Journal of Pure and Applied Mathematics ,Vol.47, pp.565-577, 2022.
[30] Rajeshwari S., Husna V. and Sheeba buzurg, Entire solution of certain types of delay- differential equations, Italian Journal of Pure and Applied Mathematics Vol.46, pp. 850-856, 2021.

Correspondingn author: HUSNA V. *
Department of Mathematics, School of Engineering, Presidency University, Itgalpura, Rajanukunte, Bengaluru-560 064, INDIA

Email address: husna@presidencyuniversity.in,husnav43@gmail.com
VEENA
Department of Mathematics, School of Engineering, Presidency University, Itgalpura, Rajanukunte, Bengaluru-560 064, InDIA

Email address: manjveena@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30D35 .
 Key words and phrases. Weighted Sharing, Meromorphic Functions, Differencedifferential, Uniqueness etc.

 Submitted March 6, 2023. Revised March 17, 2023.

