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THE EXISTENCE OF MILD SOLUTION TO NON-INSTANTANEOUS IMPULSES FRACTIONAL

DIFFERENTIAL EVOLUTION EQUATION WITH MEASURE OF NON COMPACTNESS

M.HANNABOU, M.BOUAOUID AND K.HILAL

Abstract. In this Paper, we are going to study the existence results for the non-instantaneous impulses fractional
differential evolution equation by using measure of non compactness. The theory of operator semigroups, probability
density function, Mönch - fixed point theorem, are the main tools of our study results for this problem . Lastly, an
example is provided to illustrate the results.

1. Introduction

Fractional differential equations appear naturally in several fields such as physics, engineering, biophysics,
blood flow phenomena, aerodynamics, electron-analytical chemistry, biology, and economy. For more details,
we refer the readers to [4, 5, 28] and many other references therein control theory, etc. An excellent account
in the study of fractional differential equations.
Impulsive effects arise from the real world and are used to describe sudden, discontinuous jumps. A differen-
tial equation with no instantaneous impulses is a generalization of the classical theory of impulsive differential
equations. For some general and recent works on the theory of impulsive differential equations, we refer the
readers to [24, 25, 30].
The existence of solutions of the non-instantaneous impulsive problem has been studied through some ap-
proaches, such as fixed point and analytic semigroup theories. For more information, look at. [22, 23, 31, 32].
Recently, the variational structure of non-instantaneous impulsive linear problems has been developed in [29].
Among the essential applications for fractional differential, we find control of turbines and satellite images,
satellite imaging is shifting from the photo-interpreter era to one of automatic monitoring. Indeed, the vast
amount of data provided by the recent constellations of satellites, performing recurrent observation of every
point on the globe, can only be handled by automatic methods, controlling false detections is thus crucial. The
low costs of those satellites often imply lower resolution, the fusion of multi-date images can compensate to
some extent for the low resolution. Given their future role in the energetic transition and their spread over
countries or continents, monitoring wind turbines is a natural candidate for such studies. This work details
an algorithm for automatic, multi-date wind turbine detection on low-resolution optical satellite images. The
method is based on the contrary statistical approach to provide control of false detections and exploits the
geometry of wind turbines’ shadows and hubs, look at. [41, 42, 43, 44].
Recently, Hernàndez and O’Regan [22], started a study on the Cauchy problem for a new type first-order
evolution equation with no-instantaneous impulses of the form:

u′(t) = Au(t) + f (t,u(t), t ∈ (si , ti+1], i = 0,1, . . . ,m,
u(t) = gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,m,
u(0) = x0 ∈ X,

where A : D(A) ⊂ X −→ X is the generator of a C0-semigroup of bounded linear operators (T (t))t ≥ 0 defined
on a Banach space (X,∥ . ∥), x0 ∈ X,0 = t0 = s0 < t1 ≤ s1 ≤ t2 < . . . < tN ≤ sN ≤ tN + 1 = a are pre-fixed numbers,
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gi ∈ C((ti , si]×X,X) for all i = 1, . . . ,N and f : [0, a]×X −→ X is a suitable function.
Michal Feãkan, JinRong Wang, and Yong Zhou [27], have considered Periodic Solutions for Nonlinear Evolution
Equations with non-instantaneous Impulses of the form:

u′(t) = Au(t) + f (t,u(t), t ∈ (si , ti+1], i = 0,1, . . . ,∞,
u(t+i ) = gi(t,u(t

−
i )), i = 1,2, . . . ,∞,

u(t) = gi(ti ,u(t−i )), t ∈ (ti , si], i = 1,2, . . . ,∞,
u(0) = x,

where the fixed points si and ti satisfy 0 = s0 < t1 ≤ s1 ≤ t2 < . . . < tm ≤ sm ≤ tm+1 ≤ . . . with limi→∞ ti = ∞,
and ti+m = ti + T ,si+m = si + T ,m ∈ N denoted the number of impulsive points between 0 and T . Moreover,
f : [0,∞)×X −→ X is a T -periodic, with respect to t ∈ [0,∞), Carathéodory function and gi : [ti , si]×X −→ X is a
continuous function for all i = 1,2, . . . ,∞ with gi+m = gi .
Melliani et al, [34] have considered, a general class of periodic boundary value problems for controlled non-
linear impulsive evolution equations on Banach spaces:

u′(t) = Au(t) + f (t,u(t),u(ρ(t))) +B(t)c(t), t ∈ (si , ti+1], i = 0,1,2, . . . ,m,c ∈ Uad ,
u(t) = T (t − ti)gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,m,
u(0) = u(a) ∈ X.

The operator A : D(A) : X −→ X is the generator of a strongly continuous semigroup {T (t), t ≥ 0} on a Banach
space X with a norm ∥.∥, and the fixed points si and ti satisfying 0 = s0 < t1 ≤ s1 ≤ t2 < . . . < tm ≤ sm ≤ tm+1 = a are
pre-fixed numbers, f : [0, a]×X ×X −→ X is continuous, ρ : [0, a] −→ [0, a] is continuou, and gi : [ti , si]×X −→ X is
continuous for all i = 1,2, . . . ,m.
Pradeep Kumar, Dwijendra N. Pandey, D. Bahuguna [26], have considered the following impulsive fractional
differential equations in a Banach space (H,∥.∥) for which impulses are no instantaneous:

CDα
t u(t) +Au(t) = f (t,u(t),u(g(t))), t ∈ (si , ti+1], i = 0,1, . . . ,N ,

u(t) = hi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,N ,
u(0) = u0 ∈H,

where CDα
t is the Caputo fractional derivative of order β, −A is the infinitesimal generator of an analytic

semigroup of bounded linear operators, {S(t), t ≥ 0} on a Banach space H , the impulses start suddenly at the
points ti and their action continues on the interval [ti , si], 0 = t0 = s0 < t1 ≤ s1 ≤ t2 <, . . . ,< tN ≤ sN ≤ tN+1 = T0, the
functions hi ∈ C((ti , si]×H,H) for each i = 1,2, . . . ,N ,g : [0,T0] −→ [0,T0] and f : [0,T0]×H ×H −→H are suitable
functions.
The main techniques relay on the impulsive integrodifferential equations, Mönch fixed point theorem via
measure of noncompactness.
K. Malar, A. Anguraj [33], have studied the Existence Results of Abstract Impulsive Integrodifferential Systems
with Measure of Non-compactness:

u′(t) = Au(t) + f (t,u(t),
∫ t
0 ρ(t, s)h(t, s,u(s))ds)), t ∈ (si , ti+1], i = 0,1, . . . ,m

u(t) = gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,m
u(0) = u0 + k(u),

where A generate a C0- semi group of bounded linear operator {T (t), t ≥ 0} defined on a Banach space (X,∥.∥).
u0 ∈ X,0 = t0 = s0 < t1 ≤ s1 ≤ t2 <, . . . ,< tn ≤ sn ≤ tn+1 = b, are prefixed numbers, k : X −→ X, and gi ∈ C((ti , si]×X,X)
for all i = 1,2, . . . ,n, f is a given function f : [0,b]×X ×X −→ X and h ∈ C(D,R+), D = {(t, s)|t, s ∈ [0,b], t ≥ s}.
In this paper, we investigate the existence of a mild solution for controlled nonlinear evolution equations with
non-instantaneous impulses:

Dαu(t) = Au(t) + f (t,u(t),u(ρ(t)) +B(t)c(t), t ∈ (si , ti+1], i = 0,1, . . . ,n,c ∈Uad
u(t) = Sα(t − ti) + gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,n
u(0) = u0 + k(u),

(1.1)

where CDα
t is the Caputo fractional derivative of order α ∈ (0,1). A is the infinitesimal generator of an analytic

semigroup of bounded linear operators, {T (t), t ≥ 0} on a Banach space (X,∥.∥). u0 ∈ X,0 = t0 = s0 < t1 ≤ s1 ≤
t2 <, . . . ,< tn ≤ sn ≤ tn+1 = b, are pre - fixed numbers, k : X −→ X, and gi ∈ C((ti , si] ×X,X), B : [0,b] −→ L(Y ,X)
and Ii : X −→ X for all i = 1,2, . . . ,n, f is a given function f : [0,b]×X ×X −→ X and h ∈ C(D,R+), D = {(t, s)|t, s ∈
[0,b], t ≥ s}.
This paper is organized as follows: in the second section, we recall some notations and several known results.
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In the third section, we present our main results on the existence of solutions of the problem above. In the
fourth section, we give an application to demonstrate our main results.

2. Preliminaries

Next, we review some basic concepts, notations, and technical results that are necessary for our study.
Let C([0,b],X) denote the Banach space of all continuous functions from [0,b] into X with the norm ∥u∥C :=
sup{|u(t)| : t ∈ [0,b]} for u ∈ C([0,b],X). A Co- semi-group T (t) is said to be compact if T (t) is compact for t > 0.
If the semi-group T (t) is compact, then t −→ T (t)u are equi-continuous at all t > 0 with respect to u in all
bounded subset of X, that is, the semi-group T (t) is equi-continuous.
We consider the space:

PC(J,X) = {u : J −→ X : u ∈ C((ti , ti+1],X), i = 0,1, . . . ,n

and there exist u(t−i ) and u(t+i ), i = 1, . . . ,n with u(t−i ) = u(ti)},
with the norm ∥u∥PC := sup{|u(t)| : t ∈ [0,b]}.
Let Y be another separable reflexive Banach space where the controls c take values. Denote by Pf (y) a class
of nonempty closed and convex subsets of Y . We suppose that the multi-valued map w : [0,T ] −→ Pf (y) is
measurable, w(.) ⊂ E, where E is a bounded set of Y , and the admissible control set

Uad = {c ∈ Lp(E) : c(t) ∈ w(t), a.e.},p > 1.

Then Uad , ∅, which can be found in [3]. Some of our results are proved using the next well-known results.

Definition 2.1. [15] The Riemann-Liouville fractional integral of order α with the lower limit zero for a
function f is defined as

Iαf (t) =
∫ t

0

(t − s)α−1

Γ (α)
f (s)ds, α > 0,

provided the integral exists, where Γ is the gamma function.

Definition 2.2. [15] The Riemann-Liouville derivative of order α with the lower limit zero for a function
f : [0,∞) −→R can be written as

(LDαf )(t) =
1

Γ (n−α)

(
d
dt

)n∫ t

0

(t − s)n−α−1

Γ (α)
f (s)ds n− 1 < q < n,t > 0.

Definition 2.3. [15] For a function h given on the interval [a,b], the Caputo fractional-order derivative of f ,
is defined by

(cDα
a+f )(t) =

1
Γ (n−α)

∫ t

a

(t − s)n−α−1

Γ (α)
f (n)(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.1. [5] Let α > 0 and x ∈ C(0,T )∩L(0,T ). Then the fractional differential equation

Dαx(t) = 0

has a unique solution
x(t) = k1t

α−1 + k2t
α−2 + . . .+ knt

α−n,

where ki ∈R, i = 1,2, . . . ,n, and n− 1 < α < n.

Lemma 2.2. [5] Let α > 0. Then for x ∈ C(0,T )∩L(0,T ) we have

IαDαx(t) = x(t) + c0 + c1t + . . .+ cn−1t
n−1,

fore some ci ∈R, i = 1,2, . . . ,n− 1. Where n = [α] + 1.

Next, we introduce the Hausdorff’s measure of noncompactness µ(.) defined on each bounded subset Ω of
Banach space Y by

µ(Ω) = inf{ε > 0,Ω has a finite ε − net in Y }.
Some basic properties of µ(.) are given in the following Lemma:

Lemma 2.3. ([1]). Let Y be a real Banach space and B,C ⊆ Y be bounded, the following properties are
satisfied:

(1) B is pre-compact if and only if µ(B) = 0,
(2) µ(B) = µ(B) = µ(convB), where B and convB mean the closure and convex hull of B, respectively,
(3) µ(B) ≤ µ(C) when B ⊆ C,
(4) µ(B+C) ≤ µ(B) +µ(C), where B+C = {x+ y,x ∈ B,y ∈ C},
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(5) µ(B∪C) ≤max{µ(B),µ(C)},
(6) µ(λB) = |λ|µ(B) for any λ ∈R,
(7) If the map Q : D(Q) ⊆ Y −→ Z is Lipschitz continuous with constant k, then µ(QB) ≤ kµ(B) for any

bounded subset B ⊆D(Q), where Z be a Banach space.
(8) µ(B) = inf{d(B,C),C ⊆ Y be pre-compact} = inf{d(B,C),C ⊆ Ybe finite valued}, where d(B,C) means the

nonsymmetric ( or symmetric) Hausdorff distance between B and C in Y .
(9) If {Wn}∞n=1 is a decreasing sequence of bounded closed nonempty subsets of Y and limn→∞µ(Wn) = 0,

then ∩∞n=1Wn is nonempty and compact in Y .
The map Q :W ⊆ Y −→ Y is said to be an µ-contraction if there exists a positive constant 0 < k < 1 such
that µ(QC) ≤ kµ(C) for any bounded closed subset C ⊆W, where Y is a Banach space.

Lemma 2.4. ([1]). If W ⊆ PC([0,K],X) is bounded, then µ(W (t)) ≤ µ(W )PC for all t ∈ [0,K], where W (t) =
{u(t) : u ∈ W } ⊆ X . Furthermore if W is equicontinuous on [0,K], then µ(W (t)) is continuous on [0,K], and
µ(W )P C = sup{µ(W (t)) : t ∈ [0,K]}.

Lemma 2.5. ([2]). If {un}∞n=1 ⊂ L1(0,K,X) is uniformly integrable, then µ({un}∞n=1) is measurable and

µ({
∫ t

0
un(s)ds}∞n=1) ≤ 2

∫ t

0
µ{un(s)}∞n=1ds

Lemma 2.6. ([16]). If the semi-group T (t) is equicontinuous and η ∈ L1(0,K,R+), then the set {t −→
∫ t
0 T (t −

su(s)ds,u ∈ L1(0,K,R+),∥u(s)∥ ≤ η(s), is equicontinuous for s ∈ [0,K]}.

Lemma 2.7. ([8]). If W is bounded, then for each ε > 0, there is a sequence {un}∞n=1 ⊂W such that

µ(W ) ≤ 2µ({un}∞n=1) + ε.
The following fixed point theorem, a nonlinear alternative of Mönch type, plays a key role of the problem (1.1).

Theorem 2.1. (Mönch’s Fixed Point Theorem)([11]) Let D be a bounded, closed and convex subset of a
Banach space such that 0 ∈D, and let N be a continuous mapping of D into itself. If the implication:

V = convN (V ) or V =N (V )∪ {0} =⇒ µ(V ) = 0,

holds for every subset V of D, then N has a fixed point.

Theorem 2.2. ([2]) Let D be a closed convex subset of a Banach space X and 0 ∈D. Assume that F :D −→ X
is a continuous map which satisfies Mönch’s condition, that is, (M ⊆ D is countable, M ⊆ co({0} ∪ F(M) −→M
is compact). Then F has a fixed point in D.

Let us recall the following definition of mild solutions for the fractional evolution equation involving the
Caputo fractional derivative.

Definition 2.4. ([19, 20]) A function x ∈ C([0,b],X) is said to be a mild solution of the following problem:cDαu(t) = Au(t) + y(t), t ∈ (0,b],
u(0) = u0,

if it satisfies the integral equation

u(t) = Pα(t)u0 +
∫ t

0
(t − s)α−1Qα(t − s)y(s)ds.

Where

Pα(t) =
∫ ∞
0
ξα(θ)T (t

αθ)dθ, Qα(t) = α
∫ ∞
0
θξα(θ)T (t

αθ)dθ, (2.1)

ξα(θ) =
1
α
θ−1−

1
αωα(θ

− 1
α ) ≥ 0,

ωα(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ (nα +1)
n!

sin(nπα), θ ∈ (0,∞), (2.2)

and ξα is a probability density function defined on (0,∞) [10], that is,

ξα(θ) ≥ 0,θ ∈ (0,∞),
∫ ∞
0
ξα(θ)dθ = 1.
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It is not difficult to verify that ∫ ∞
0
θξα(θ)dθ =

1
Γ (1 +α)

.

Remark 2.1. By applying the Laplace transform and probability density functions, Zhou and Jiao [19, 20]
introduced the above definition of mild solutions for fractional evolution equations. For pioneering work on
Caputo fractional evolution equations, we refer the readers to [12, 13].

We make the following assumption on A in the whole paper.
H(A) : The operator A generators a strongly continuous semigroup {T (t) : t ≥ 0} in X, and there is a constant
MA ≥ 1 such that supt∈[0,∞){|T (t)|L(X)} ≤MA.

Definition 2.5. [40] We say that a function u ∈ PC([0,b],X) is called a mild solution of Cauchy problem:
Dαu(t) = Au(t) + f (t,u(t),u(ρ(t)) +B(t)c(t), a.e. t ∈ (si , ti+1], i = 0,1, . . . ,n,c ∈ Uad 0 < α < 1
u(t) = Sα(t − ti)gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,n
u(0) = u0 + k(u),

(2.3)

if u satisfies

u(t) =


Pα(t)(u0 + k(u)) +

∫ t
0 (t − s)

α−1Qα(t − s)[f (s,u(s),u(ρ(s)) +B(s)c(s)]ds, t ∈ [0, t1]
Sα(t − ti)gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,n

Pα(t − si)di +
∫ t
0 (t − s)

α−1Qα(t − s)[f (s,u(s),u(ρ(s)) +B(s)c(s)]ds, t ∈ [si , ti+1],

where, for i = 1,2, · · · ,n,

di = Ii(u(ti)) + gi(si ,u(si))−
∫ si

0
(si − s)α−1Qα(si − s)[f (s,u(s),u(ρ(s)) +B(s)c(s)]ds (2.4)

3. The Main Results

In this section, we see the existence of solutions for problem (1.1) by applying theorem 2.2. For some real
constants r, we define

W = {u ∈ PC([0,b],X),∥u(t)∥PC ≤ r,∀t ∈ [0,b]}.
Now we introduce the following hypotheses:

• (H1) (i) The C0-semi group T (t) generated by A is equicontinuous and MA = sup{|T (t)| : t ∈ [0,b]}.
(ii) B : [0,b] −→L(Y ,X) is essentially bounded, B ∈ L∞([0,b],L(Y ,X)).

• (H2) (i) The functions gi are continuous and there are positive constants Lgi such that
∥gi(t,u)− gi(t,v)∥ ≤ Lgi [∥u − v∥], for all u,v ∈ X, t ∈ (ti , si] and each i = 0,1,2 . . . ,n.
(ii) There are positive constants Mi > 0 such that ∥gi(t,u)∥ ≤ Mi∥u∥ for all u ∈ X, t ∈ (ti , si] and each
i = 0,1, . . . ,n.
(iii) For each bounded subset B ⊂ X we have µ(gi(t,B)) ≤Mi(supµ(B(si))), i = 0,1, . . . ,n.

• (H3) (i) There exists a function mf ∈ C([0,b],X) and a non-decreasing continuous function Ωf : X −→ X
such that ∥f (t,u,v)∥ ≤mfΩf (∥u∥+ ∥v∥) for all, u ∈ X a.e t ∈ [0,b].
(ii) There is an integrable function η : [0,b] −→ [0,+∞] such that µ(f (t,D1,D2) ≤ η(t)[sup−∞<θ≤0µ(D1(θ)+
µ(D2)] for a.e t ∈ [0,b]. and any bounded subsets D1,D2 ⊂ X and µ is the Hausdroff measure of non-

compactness. Here we let
∫ t
0 η(s)ds ≤ ζ

∗.
• (H4) k : X −→ X is continuous and there exists positive constants c and d such that ∥k(u)−k(v)∥ ≤ c∥u−v∥

and ∥k(u)∥ ≤ c∥u∥+ d, for all u ∈ PC(X).
• (H5) f : [0,b] ×X ×X −→ X is of Carathéodory type, that is f (.,u,Gu) is measurable for all u ∈ X and
f (t, ., .) is continuous for a.e t ∈ [0,b].

• (H6) (i) The function h(t, s, .) : X −→ X is continuous for (t, s) ∈ △ , and for each u ∈ X, the function

h(., .,u) : △ −→ X is measurable. Moreover, there exists a function ν : △ −→ R
+ with sup

t∈[0,b]

∫ t
0 ν(t, s)ds :=

ν∗ <∞ such that ∥h(t, s,u)∥ ≤ ν(t, s)∥u∥,u ∈ X.
(ii) For any bounded set D1 ∈ X and 0 ≤ s ≤ t ≤ b, there exists a functions ψ : ∆ −→ R

+ such that

µ(h(t, s,D1)) ≤ Ψ (s, t)µ(D1) where sup
t∈[0,b]

∫ t
0 Ψ (s, t)ds := Ψ ∗.
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Remark 3.1. From the assumptions (H1) − (H3) and the definition of Uad , it is also easy to verify that Bc ∈
Lp([0,b],X) with p > 0 for all c ∈ Uad .
Therefore, Bc ∈ L1([0,b],X) and ∥Bc∥L1 <∞.

Theorem 3.1. Assume that conditions (HA) and (H1)− (H6) hold. Then there exists at least one mild solution
for problem (1.1) provided that :

λ∗ =MA[(LI +Lgi ) +
2MA

Γ (α +1)
ζ∗(tαi+1 +MAs

α
i +2lψ∗tαi+1 +2MAlψ

∗sαi )] < 1 (3.1)

Proof. We define a mapping Γ : PC([0,b],X) −→ PC([0,b],X) by:

Γu(t) =


Pα(t)(u0 + k(u)) +

∫ t
0 (t − s)

α−1Qα(t − s)[f (s,u(s),
∫ s
0 ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds, t ∈ [0, t1]

Ii(u(ti)) + gi(t,u(t)), t ∈ (ti , si], i = 1,2, . . . ,n

Pα(t − si)di +
∫ t
0 (t − s)

α−1Qα(t − s)[f (s,u(s),
∫ s
0 ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds, t ∈ [si , ti+1],

i = 1,2, . . . ,n,

with di , i = 1,2, . . . ,n, defined by (2.4).
for all u ∈ PC([0,b],X), and show that the operator Γ satisfies the hypothesis of theorem 2.2. The proof consists
of several steps.
step 1 : We show that the operator Γ is continuous.
Let {uk} be a sequence such that uk −→ u in PC([0,b],X). Then by (H5), we have that

f (s,uk(s),
∫ s
0 ρ(s,τ)h(s,τ,uk(τ))dτ) −→ f (s,u(s),

∫ s
0 ρ(s,τ)h(s,τ,u(τ))dτ), k −→∞, for all s ∈ [0,b].

Case 1: For t ∈ [0, t1], we have

∥Γuk(t)− Γu(t)∥ =
∥∥∥∥Pα(t)(u0 + k(u)) +∫ t

0
(t − s)α−1Qα(t − s)[f (s,uk(s),

∫ s

0
ρ(s,τ)h(s,τ,uk(τ))dτ)

+B(s)c(s)]ds −Pα(t)(u0 + k(u))−
∫ t

0
(t − s)α−1Qα(t − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)

−B(s)c(s)]ds
∥∥∥∥

≤ αMA

Γ (α +1)

∫ t

0
(t − s)α−1∥f (s,uk(s),

∫ s

0
ρ(s,τ)h(s,τ,uk(τ))dτ)

− f (s,u(s),
∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)∥PCds.

Case 2 : For t ∈ (ti , si], i = 1, . . . ,n, we have

∥Γuk(t)− Γu(t)∥ = ∥Ii(uk(ti)) + gi(t,uk(t)))− Ii(u(ti))− gi(t,u(t)))∥
≤ LI∥uk −u∥+Lgi ∥uk −u∥
≤ (LI +Lgi )∥uk −u∥PC .

Case 3 : For t ∈ (si , ti+1], i = 1, . . . ,n, we have

∥Γuk(t)− Γu(t)∥ ≤
∥∥∥∥Pα(t − si)[Ii(uk(ti))− Ii(u(ti))

+ gi(s,uk((si)))− gi(s,u(si)))
∫ si

0
(t − s)α−1Qα(i−s)

(
f (s,uk(s),

∫ s

0
ρ(s,τ)h(s,τ,uk(τ))dτ)

− f (s,u(s),
∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ))

)
ds

]∥∥∥∥
+ ∥

∫ t

0
(t − s)α−1Qα(t − s)[f (s,uk(s),

∫ s

0
ρ(s,τ)h(s,τ,uk(τ))dτ)

− f (s,u(s),
∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)]ds∥

≤MA

[
(LI +Lgi )∥uk −u∥PC +

MA

Γ (α +1)
sαi ∥(f (s,uk(s),

∫ s

0
ρ(s,τ)h(s,τ,uk(τ))dτ)

− f (s,u(s),
∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ))∥PC

]
+

MA

Γ (α +1)
tαi+1∥[f (s,uk(s),

∫ s

0
ρ(s,τ)h(s,τ,uk(τ))dτ)− f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)]∥PC .
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Thus we infer that ∥Γuk − Γu∥PC −→ 0 as k −→∞,
which implies that the mapping Γ is continuous on PC([0,b],X).
step 2 : The operator Γ is bounded.
We claim that ΓW ⊆W , for any u ∈W ⊆ PC([0,b],X), by (H3)(i), we have
Case 1: Now, for every t ∈ [0, t1], we have:

∥Γu(t)∥ ≤MA(∥u0∥+ c∥u∥+ d) +
αMA

Γ (α +1)
∥
∫ t

0
[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)) +B(s)c(s)]ds∥

≤MA(∥u0∥+ cr + d) +
MA

Γ (α +1)
tα1 [mf (s)Ωf (∥u∥+ l

∫ s

0
ν(s,τ)dτ∥u∥) + ∥Bc∥L1 ]

≤MA(∥u0∥+ cr + d) +
MA

Γ (α +1)
tα1 [mf (s)Ωf r(1 + lν

∗) + ∥Bc∥L1 ] ≤ r.

Case 2: Now, for every t ∈ (ti , si], i = 1,2, . . . ,n, we get

∥Γu(t)∥ ≤ ∥Ii(u(ti))∥+ ∥gi(si ,u(si)∥ ≤ φI∥u∥+Mi∥u∥
≤ (φI +Mi)∥u∥ ≤ r.

Case 3: Now, for each t ∈ (si , ti+1], i = 1,2, . . . ,n, we get

∥Γu(t)∥ ≤
∥∥∥∥Pα(t − si)[Ii(u(ti)) + gi(si ,u(si) +∫ si

0
(si − s)α−1Qα(si − s)(f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ))

+Bc(s))ds
]∥∥∥∥+∫ t

0
(t − s)α−1∥Qα(t − s)(f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)) +B(s)c(s))∥ds

≤MA

[
φI r +Mir +

MA

Γ (α +1)
sαi ([mf (s)Ωf r(1 + lν

∗) + ∥Bc∥L1 ])
]

+
MA

Γ (α +1)
tαi+1([mf (s)Ωf r(1 + lν

∗) + ∥Bc∥L1 ])

≤ r.

From above, we have, Γu ∈W. Which implies that ΓW ⊂W.
step 3 : Γ (W ) is equicontinuous:
Case 1: For interval [0, t1], 0 ≤ τ1 ≤ τ2 ≤ t1 and for each Γ ∈W (u), we have

∥Γu(τ2)− Γu(τ1)∥ ≤ ∥Pα(τ2)−Pα(τ1)(∥u0∥+ c∥u∥+ d)

+ ∥
∫ τ2

0
(τ2 − s)α−1Qα(τ2 − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ))

+B(s)c(s)]ds −
∫ τ1

0
(τ1 − s)α−1Qα(τ1 − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)) +B(s)c(s)]ds∥

≤ ∥Pα(τ2)−Pα(τ1)∥(∥u0∥+ cr + d)

+
∫ τ1

0
∥((τ2 − s)α−1Qα(τ2 − s)− (τ1 − s)α−1)Qα(τ1 − s)∥[mf (s)Ωf r(1 + lν

∗)

+ ∥Bc∥L1 ]ds − ∥
∫ τ2

τ1

((τ2 − s)α−1Qα(τ2 − s)[mf (s)Ωf r(1 + lν
∗) + ∥Bc∥L1 ]ds.

Case 2: For interval (ti , si], i = 1,2, . . . ,n, ti ≤ τ1 ≤ τ2 ≤ si we get

∥Γu(τ2)− Γu(τ1)∥ ≤ LI∥u(τ2)−u(τ1)∥+Lgi ∥u(τ2)−u(τ1)∥.
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Case 3: For interval (si , ti+1], i = 1,2, . . . ,n, si ≤ τ1 ≤ τ2 ≤ ti+1, we get

∥Γu(τ2)− Γu(τ1)∥ ≤ ∥Pα(τ2 − si)−Pα(τ1 − si)∥[LI∥u(τ2)−u(τ1)∥+Lgi ∥u(τ2)−u(τ1)∥]

+ ∥
∫ τ2

0
(τ2 − s)α−1Qα(τ2 − s)(f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)) +B(s)c(s))ds

−
∫ τ1

0
(τ1 − s)α−1Qα(τ1 − s)(f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)) +B(s)c(s))ds∥

≤ ∥Pα(τ2 − si)−Pα(τ1 − si)∥[LI∥u(τ2)−u(τ1)∥+Lgi ∥u(τ2)−u(τ1)∥]

+
∫ τ1

0
(τ1 − s)α−1∥Qα(τ2 − s)−Qα(τ1 − s)∥[mf (s)Ωf r(1 + lν

∗) + ∥Bc∥L1 ]ds

−
∫ τ2

τ1

(τ2 − s)α−1∥Qα(τ2 − s)∥[mf (s)Ωf r(1 + lν
∗) + ∥Bc∥L1 ]ds.

step 4 : Mönch condition hold.
Suppose that V ⊆ W is countable and V ⊆ conv({0} ∪ Γ (V )). We show that µ(V ) = 0 where µ is the Hausdroff
measure of noncompactness. Without loss of generality, we may assume that V = {u}∞k=1 and we can easily
verify that V is bounded and equicontinuous.
Case 1: For each t ∈ [0, t1] we get

(Γu)(t) = Pα(t)[u0 − k(u)] +
∫ t

0
(t − s)α−1Qα(t − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds,

(Γu)(t) = (Γ1u)(t) + (Γ2u)(t),

with

(Γ1u)(t) = Pα(t)[u0 − k(u)]

(Γ2u)(t) =
∫ t

0
(t − s)α−1Qα(t − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds.

Moreover, Γ1 : V −→ PC([0,b],X) is Lipschitz continuous with constant MAc due to the conditions (H1) and (H4).
In fact u,v ∈ V , we have

∥(Γ1u)(t)− (Γ1v)(t)∥ ≤ sup
t∈[0,t1]

∥Pα(t)[k(u)− k(v)]∥ ≤MAc∥u − v∥PC .

So, from lemma 2.3 - 2.5, 2.7 and hypotheses (H3)(ii), (H6)(ii), we get:

µ({Γuk}∞k=1) ≤ µ({Γ1uk}
∞
k=1) +µ({Γ2uk}

∞
k=1)

≤MAcµ({uk}∞k=1) +µ
(∫ t

0
(t − s)α−1Qα(t − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds

)
≤MAcµ({uk}∞k=1) +

2αMA

Γ (α +1)

∫ t

0
µ
(
(t − s)α−1[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds

)
≤MAcµ({uk}∞k=1) +

2αMA

Γ (α +1)

∫ t

0
(t − s)α−1η(t)

[
sup

0≤s≤t1
µ({uk(s)}∞k=1) +µ(

∫ s

0
ρ(s,τ)h(s,τ, {uk(τ)}∞k=1)dτ))

]
ds

≤MAcµ({uk}∞k=1) +
2αMA

Γ (α +1)

∫ t

0
(t − s)α−1η(t)[ sup

0≤s≤t1
µ({uk(s)}∞k=1) + 2l

∫ s

0
ψ(s,τ)dτµ({uk(τ)}∞k=1)]ds

≤MAcµ({uk}∞k=1) +
2αMA

Γ (α +1)

∫ t

0
(t − s)α−1η(t)[ sup

0≤s≤t1
µ({uk(s)}∞k=1) + 2lψ∗µ({uk(τ)}∞k=1)]ds

≤MAcµ({uk}∞k=1) +
2MAt

α
1

Γ (α +1)
ζ∗(1 + 2lψ∗)( sup

0≤s≤t1
µPC(V (s)))

≤MA[c+
2tα1

Γ (α +1)
ζ∗(1 + 2lψ∗)]( sup

0≤s≤t1
µPC(V (s))).

Case 2: For each t ∈ (ti , si], i = 1,2, . . . ,n, we get:

µ({Γu}∞k=1) ≤ µ(Ii(ui(si))) +µ(gi(si ,u(si)))
≤ (φI +Mi)( sup

0≤ti≤si
µPC(V (s))).
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Case 3: For each t ∈ (si , ti+1], i = 1,2, . . . ,n, we get:

(Γu)(t) = Pα(t − si)
[
Ii(u(ti)) + gi(si ,u(si))

−
∫ si

0
(si − s)α−1Qα(si − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]

]
+
∫ t

0
(t − s)α−1Qα(t − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)],ds

(Γu)(t) = (Γ1u)(t) + (Γ2u)(t),

with
(Γ1u)(t) = Pα(t − si)(Ii(u(ti)) + gi(si ,u(si)),

(Γ2u)(t) =
∫ t

0
(t − s)α−1Qα(t − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds

−Pα(t − si)
∫ si

0
(si − s)α−1Qα(si − s)[f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds.

Moreover, Γ : V −→ PC([0,b],X is Lipschitz continuous with constant MA(LI + Lgi ) due to the conditions (H1)
and (H2)(i). In fact u,v ∈ V , we have

∥(Γ1u)(t)− (Γ1v)(t)∥ = ∥Pα(t − si)∥(∥Ii(u(ti))− Ii(u(ti))∥+ ∥gi(si ,u(si)− gi(si ,v(si)∥)
≤MA(LI +Lgi )∥u − v∥PC .

So, from lemma 2.1 - 2.3, 2.5 and hypotheses (H3)(ii), (H6)(ii), we have

µ({Γuk}∞k=1) ≤ µ({Γ1uk}
∞
k=1) +µ({Γ2uk}

∞
k=1)

≤MA(LI +Lgi )µ({uk}
∞
k=1) +

2αMA

Γ (α +1)

∫ t

0
(t − s)α−1µ([f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ)

+B(s)c(s)]ds)

+
2αM2

A

Γ (α +1)

∫ si

0
(si − s)α−1µ([f (s,u(s),

∫ s

0
ρ(s,τ)h(s,τ,u(τ))dτ) +B(s)c(s)]ds)

≤MA(LI +Lgi )µ({uk}
∞
k=1) +

2αMA

Γ (α +1)

∫ t

0
(t − s)α−1η(s)[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1)

+µ(
∫ s

0
ρ(s,τ)h(s,τ, {uk(τ)}∞k=1)dτ))]ds

+
2αM2

A

Γ (α +1)

∫ si

0
(si − s)α−1η(s)[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1) +µ(

∫ s

0
ρ(s,τ)h(s,τ, {uk(τ)}∞k=1)dτ))]ds

≤MA(LI +Lgi )µ({uk}
∞
k=1) +

2αMA

Γ (α +1)

∫ t

0
(t − s)α−1[η(s)[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1)

+ 2l
∫ s

0
ψ(s,τ)dτµ({uk(τ)}∞k=1)]ds

+
2αM2

A

Γ (α +1)

∫ si

0
(si − s)α−1η(s)[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1) + 2l

∫ s

0
ψ(s,τ)dτµ({uk(τ)}∞k=1)]ds

≤MA(LI +Lgi )µ({uk}
∞
k=1) +

2αMA

Γ (α +1)

∫ t

0
(t − s)α−1[η(s)[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1) + 2lψ∗µ({uk(τ)}∞k=1)]ds

+
2αM2

A

Γ (α +1)

∫ si

0
(si − s)α−1η(s)[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1) + 2lψ∗µ({uk(τ)}∞k=1)]

≤MA(LI +Lgi )µ({uk}
∞
k=1) +

2MAt
α
i+1

Γ (α +1)
ζ∗[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1)

+ 2lψ∗µ({uk(τ)}∞k=1)] +
2M2

As
α
i

Γ (α +1)
ζ∗[ sup

si≤s≤ti+1
µ({uk(s)}∞k=1) + 2lψ∗µ({uk(τ)}∞k=1)]

≤MA[(LI +Lgi ) +
2MA

Γ (α +1)
ζ∗(tαi+1 +MAs

α
i +2lψ∗tαi+1 +2MAlψ

∗sαi )] sup
si≤s≤ti+1

µPC(V (s)).
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From above, we have

µPC(Γ (v)) ≤MA[(LI +Lgi ) +
2MA

Γ (α +1)
ζ∗(tαi+1 +MAs

α
i +2lψ∗tαi+1 +2MAlψ

∗sαi )] sup
si≤s≤ti+1

µPC(V )

≤ λ∗µPC(V ).

Where λ∗ =MA[(LI +Lgi ) +
2MA
Γ (α+1)ζ

∗(tαi+1 +MAs
α
i +2lψ∗tαi+1 +2MAlψ

∗sαi )] < 1. Thus from Mönch condition we get

µPC(V ) ≤ µPC((conv{0})∪ Γ (V )) = µPC(Γ (V )) ≤ λ∗µPC(V ).

which implies that µPC(V ) = 0 Hence using Theorem 2.2, there is a fixed point of u of Γ in W. Which is a mild
solution of (1.1). This completes the proof. □

4. Application

In this section, X = L2([0,π],R) and define the operator A by Ax = x′′ with the domain

D(A) = {x ∈ X : x′′ ∈ X,x(0) = x(π) = 0}.
It is well known that A is the bounded linear operator of a compact semigroup {T (t), t ≥ 0} on X and that
∥T (t)∥ ≤ e−t for all t ≥ 0. Consider a nonlocal problem of impulsive differential equations given by,

D
1
2u(t,w) = ∂2

∂w2u(t,w) +
∫ t
0 h(t, s,u(s,w))ds+F(t,u(t,w)) + c(t,w)

(t,w) ∈ ∪nn=1[si , ti+1]× [0,π]
u(t,0) = u(t,π), t ∈ [0,b]
u(0,w) +

∑n
j=1 cju(tj ,w) = u0(w),w ∈ [0,π]

u(t,w) = Ii(u(ti)) +Gi(t,u(t,w)),w ∈ [0,π], t ∈ [ti , si],

(4.1)

with 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < . . . < tn ≤ sn ≤ tn+1 = b are fixed real numbers, u0 ∈ X, F ∈ C([0,b] × R,R),
c(t,w) = B(t)c(t)w and Gi ∈ C((ti , si]×R,R) for all i = 1,2, . . . ,n.
To represent the problem (4.1) in the abstract form (1.1), we assume that

(i) f : [0,b]×X −→ X defined by f (t,x)(w) =
∫ t
0 h(t, s,u(s,w))ds+F(t,u(t,w)) for t ∈ [0,b],w ∈ [0,π].

(ii) k : P C([0,b],X) −→ X is continuous function defined by k(u)(w) = u0(w) −
∑n
j=1 cju(tj )(w), t ∈ [0,b], w ∈

[0,π], where u(t)(w) = u(t,w), t ≥ 0,w ∈ [0,π]
(iii) . gi : (ti , si]×X −→ X defined by gi(t,x)(w) = Gi(t,x(w)).

Now, we say that u ∈ P C(X) is a mild solution of (4.1) if u(.) is a mild solution of the associated abstract problem
(1.1).

Conclusion

The existence of mild solutions of a non-instantaneous impulses fractional differential evolution equations
is largely studied in several above works . Our contribution in this present work is the study of existence
of mild solutions of a non-instantaneous impulses fractional differential evolution equations by means of the
Mönch - fixed point theorem combined with theory of operator semigroups, probability density function. In
the future work, we will work on the large applications of fractional calculus which among them is the control
of turbines and satellite images .
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