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HARMONIC UNIVALENT FUNCTIONS WITH FIXED FINITELY

MANY COEFFICIENTS DEFINED BY q− CALCULUS

SAURABH PORWA, NALINI SHUKLA AND OMENDRA MISHRA

Abstract. In the present work by applying q− calculus we investigate a new
subclass of harmonic univalent functions with fixed finitely many coefficients.

We obtain coefficient conditions, distortion bounds, extreme points, convolu-

tion conditions, and convex combinations for this class. Finally, we discuss an
integral operator and a q− Jackson type integral operator.

1. Introduction

A continuous complex-valued function f = u+ iv defined in a simply-connected
domain D is said to be harmonic in D if both u and v are real harmonic in D. In
any simply-connected domain, we can write f = h+ g where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is that
|h′(z)| > |g′(z)|, z ∈ D, see [5].

Let us express the class SH of functions f = h+ g which are harmonic univalent
and sense-preserving in the open unit disk U = {z : |z| < 1} for which f(0) =
fz(0) − 1 = 0. Then for f = h + g ∈ SH we may express the analytic functions h
and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1. (1.1)

It is worthy noting that the class SH reduces to the class S of normalized analytic
univalent functions if the co-analytic part of its member is zero. For this class the
function f(z) may be expressed as

f(z) = z +

∞∑
k=2

akz
k. (1.2)
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Recently, Porwal [15] introduced the subclass Vn
H of SH consisting of functions

of form f = h+ gn, where

h(z) = z +

∞∑
k=2

|ak|zk, gn(z) = (−1)n
∞∑
k=1

|bk|zk, |b1| < 1. (1.3)

Recently, by using quantum calculus several subclasses of analytic and harmonic
univalent functions were introduced and studied by various researchers. Noteworthy
contributions in this direction may be found in [2, 4, 11, 15, 16, 18], see also [1, 19].
First, we recall the definition of q-calculus which was first introduced by Jackson
[9, 10]. For k∈N, the q− number is defined as:

[k]q =
1− qk

1− q
, 0 < q < 1. (1.4)

Hence, [k]q =
∑k−1

i=0 qi, when k → ∞ the series converges to 1
1−q . Also

lim
q→1

[k]q = k.

Jackson [9] (see also [1, 10]) defined q− derivative of a function f in the following
way

Dq(f(z)) =
f(qz)− f(z)

(q − 1)z
, q ̸=1, z ̸=0,

and Dq(f(0)) = f ′(0) provided f ′(0) exists.
It is easy to see that for a function p(z) = zk, we observe that

Dq(p(z)) = Dq(z
k) =

1− qk

1− q
zk−1 = [k]qz

k−1.

Then
lim
q→1

Dq(p(z)) = p′(z)

where p′ denotes the ordinary derivative.
Jackson [9] (see also [1, 10]) defined q− Jackson definite integral of the function

f as ∫ z

0

f(t)dqt = (1− q)z

∞∑
n=0

f(zqn)qn, z∈C.

Recently, Porwal [15] introduced the subclass RH(n, q, β, λ) consisting of functions
f = h+ g of the form (1.1) which satisfy the condition

ℜ

{
Ωn (Dq(h(z))) + (−1)nΩn (Dq(g(z)))

z

}
< β, (1.5)

for some β(1 < β ≤ 2), 0 < q < 1, λ(0 ≤ λ ≤ 1), n ∈ N, z ∈ U and the operator Ωn

was introduced by Dixit and Porwal [7].
Further, we let

RH(n, q, β, λ) ≡ RH(n, q, β, λ) ∩ Vn
H .

The study of analytic univalent functions with fixed finitely many coefficients
is an interesting topic of research in geometric function theory. Dixit and Mishra
[6], Dixit and Verma [8], Kwon [12], Owa and Srivastava [13], Thirupathi [20],
Verma and Rosy [21] studied various subclasses of analytic univalent functions
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with fixed finitely coefficients and obtained several interesting results. Motivating
by the above-mentioned work Ahuja and Jahangiri [3] studied harmonic univalent
functions with fixed second coefficients and opened up a new direction of research
in the theory of harmonic univalent functions. After the appearance of this article,
Pathak et al. [14], Porwal et al. [17] investigate some new subclasses of harmonic
univalent functions with fixed finitely many coefficients. In the present paper, by
using q− calculus we introduce a new subclass of harmonic univalent function with
fixed finitely many coefficients in the following way:
Let RH(n, q, β, λ, ci) denotes the subclass of RH(n, q, β, λ) consisting of functions
fn(z) of the form

fn(z) = h(z) + gn(z), (1.6)

where h(z) and gn(z) are given by

h(z) = z +

l∑
i=2

ci(β − 1)

[ϕ(i, λ)]
n
[i]q

zi +

∞∑
k=l+1

|ak|zk, gn(z) = (−1)n
∞∑
k=1

|bk|zk,

here

ϕ(i, λ) =
Γ(i+ 1)Γ(1− λ)

Γ(i− λ)

and 0 ≤ ci ≤ 1, 0 ≤
∑l

i=2 ci ≤ 1.
In the present paper, we obtain the coefficient condition, distortion bounds, extreme
points, convolution condition, convex combinations, an integral operator, and a q−
Jackson type integral operator.

2. Main Results

To prove our main results we shall require the following lemma.

Lemma 2.1. ([15]) Let fn = h+ gn be given by (1.3). Then fn ∈ RH(n, q, β, λ)if
and only if

∞∑
k=2

[ϕ (k, λ)]
n
[k]q |ak|+

∞∑
k=1

[ϕ (k, λ)]
n
[k]q |bk| ≤ β − 1. (2.1)

In our first theorem, we obtain a necessary and sufficient coefficient bound for
harmonic functions in RH (n, q, β, λ, ci).

Theorem 2.1. Let fn be given by (1.6). Then fn ∈ RH (n, q, β, λ, ci), if and only
if

∞∑
k=l+1

[ϕ (k, λ)]
n
[k]q

β − 1
|ak|+

∞∑
k=1

[ϕ (k, λ)]
n
[k]q

β − 1
|bk| ≤ 1−

l∑
i=2

ci, (2.2)

where 1 < β ≤ 2, 0 < q < 1, 0 ≤ λ ≤ 1, 0 ≤ ci ≤ 1, 0 ≤
∑l

i=2 ci ≤ 1, n ∈ N.
The result is sharp.

Proof. Putting

|ai| =
ci (β − 1)

[ϕ (i, λ)]
n
[i]q

, (i = 1, 2, . . . , l).
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From Lemma 2.1, we have

l∑
i=2

ci +

∞∑
k=l+1

[ϕ (k, λ)]
n
[k]q

β − 1
|ak|+

∞∑
k=1

[ϕ (k, λ)]
n
[k]q

β − 1
|bk| ≤ 1,

which proves (2.2).
The result is sharp for the function fn(z) of the form

fn(z) = z+

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi+

∞∑
k=l+1

β − 1

[ϕ (k, λ)]
n
[k]q

|xk|zk+(−1)n
∞∑
k=1

β − 1

[ϕ (k, λ)]
n
[k]q

|yk|zk,

(2.3)

where
∑∞

k=l+1 |xk|+
∑∞

k=1 |yk| ≤ 1−
∑l

i=2 ci.

Theorem 2.2. If fn ∈ RH(n, q, β, λ, ci), then for|z| = r < 1, we have

|fn(z)| ≤ (1 + |b1|)r +
l∑

k=2

|bk|rk +

l∑
k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk+

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

{
1−

l∑
k=2

ck −
l∑

k=1

[ϕ (k, λ)]
n
[k]q

β − 1
|bk|

}

and

|fn(z)| ≥ (1− |b1|)r −
l∑

k=2

|bk|rk −
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk−

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

{
1−

l∑
k=2

ck −
l∑

k=1

[ϕ (k, λ)]
n
[k]q

β − 1
|bk|

}
.

Proof. Let fn ∈ RH(n, q, β, λ, ci). Taking the absolute value of fn, we have
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|fn(z)| ≤(1 + |b1|)r +
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk +

∞∑
k=l+1

|ak|rk +

∞∑
k=2

|bk|rk

= (1 + |b1|)r +
l∑

k=2

|bk|rk +

l∑
k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk +

∞∑
k=l+1

(|ak|+ |bk|) rk

= (1 + |b1|)r +
l∑

k=2

|bk|rk +

l∑
k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk+

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

∞∑
k=l+1

[ϕ (l + 1, λ)]
n
[l + 1]q

β − 1
(|ak|+ |bk|) rk

≤ (1 + |b1|)r +
l∑

k=2

|bk|rk +

l∑
k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk+

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

∞∑
k=l+1

[ϕ (k, λ)]
n
[k]q

β − 1
(|ak|+ |bk|) rk

≤ (1 + |b1|)r +
l∑

k=2

|bk|rk +

l∑
k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk+

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

{
1−

l∑
k=2

ck −
l∑

k=1

[ϕ (k, λ)]
n
[k]q

β − 1
|bk|

}
.

Next, we prove the left-hand inequality as

|fn(z)| ≥(1− |b1|)r −
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk −
∞∑

k=l+1

|ak|rk −
∞∑
k=2

|bk|rk

= (1− |b1|)r −
l∑

k=2

|bk|rk −
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk −
∞∑

k=l+1

(|ak|+ |bk|) rk

= (1− |b1|)r −
l∑

k=2

|bk|rk −
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk−

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

∞∑
k=l+1

[ϕ (l + 1, λ)]
n
[l + 1]q

β − 1
(|ak|+ |bk|) rk

≥ (1− |b1|)r −
l∑

k=2

|bk|rk −
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk−

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

∞∑
k=l+1

[ϕ (k, λ)]
n
[k]q

β − 1
(|ak|+ |bk|) rk

≥ (1− |b1|)r −
l∑

k=2

|bk|rk −
l∑

k=2

ck (β − 1)

[ϕ (k, λ)]
n
[k]q

rk−

(β − 1)rl+1

[ϕ (l + 1, λ)]
n
[l + 1]q

{
1−

l∑
k=2

ck −
l∑

k=1

[ϕ (k, λ)]
n
[k]q

β − 1
|bk|

}
.
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In the following theorem, we obtain the extreme points of the closed convex hull of
RH(n, q, β, λ, ci) which is denoted by clcoRH(n, q, β, λ, ci).

Theorem 2.3. Let fn ∈ clcoRH(n, q, β, λ, ci), if and only if

fn(z) =

∞∑
k=l

xkhk(z) +

∞∑
k=1

ykgnk
(z), (2.4)

where hl(z) = z +
∑l

i=2
ci(β−1)

[ϕ(i,λ)]n[i]q
zi

hk(z) = z +
∑l

i=2
ci(β−1)

[ϕ(i,λ)]n[i]q
zi +

(1−
∑l

i=2 ci)(β−1)

[ϕ(k,λ)]n[k]q
zk, (k = l + 1, l + 2, . . .)

gnk
(z) = z +

∑l
i=2

ci(β−1)
[ϕ(i,λ)]n[i]q

zi + (−1)
n (1−

∑l
i=2 ci)(β−1)

[ϕ(k,λ)]n[k]q
zk, (k = 1, 2, . . .)

where xk ≥ 0, yk ≥ 0 and
∞∑
k=l

xk +

∞∑
k=1

yk = 1.

In particular, the extreme points of RH(n, q, β, λ, ci) are {hk} and {gnk
}.

Proof. Suppose that

fn(z) =

∞∑
k=l

xkhk(z) +

∞∑
k=1

ykgnk
(z),

fn(z) = z+

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi+

∞∑
k=l+1

(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q
xkz

k+(−1)
n

∞∑
k=1

(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q
ykz

k.

Therefore, fn ∈ clcoRH(n, q, β, λ, ci), since

l∑
i=2

ci +

∞∑
k=l+1

[ϕ(k, λ)]n[k]q
β − 1


(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q

xk +

∞∑
k=1

[ϕ(k, λ)]n[k]q
β − 1


(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q

 yk

=

l∑
i=2

ci +

(
1−

l∑
i=2

ci

)( ∞∑
k=l+1

xk +

∞∑
k=1

yk

)

=

l∑
i=2

ci +

(
1−

l∑
i=2

ci

)
(1− xl)

= 1−

(
1−

l∑
i=2

ci

)
xl

≤ 1.

Conversely, suppose that fn = h + gn ∈ clcoRH(n, q, β, λ, ci), where h and gn
are given by

h(z) = z +

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

|ak|zk

and

gn(z) = (−1)
n

∞∑
k=1

|bk|zk.
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Since

|ak| ≤

(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q
, (k = l + 1, l + 2, . . .)

and

|bk| ≤

(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q
, (k = 1, 2, . . .) .

We may set

xk =
[ϕ(k, λ)]n[k]q(

1−
∑l

i=2 ci

)
(β − 1)

|ak|, (k = l + 1, l + 2, . . .) ,

yk =
[ϕ(k, λ)]n[k]q(

1−
∑l

i=2 ci

)
(β − 1)

|bk|, (k = l + 1, l + 2, . . .) ,

and

xl = 1−
∞∑

k=l+1

xk −
∞∑
k=1

yk.

Then the proof is completed by noting that

fn(z) =z +

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

|ak|zk + (−1)
n

∞∑
k=1

|bk|zk

= hl(z) +

∞∑
k=l+1

(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q
xkz

k + (−1)
n

∞∑
k=1

(
1−

∑l
i=2 ci

)
(β − 1)

[ϕ(k, λ)]n[k]q
ykz

k

= hl(z) +

∞∑
k=l+1

xk (hk(z)− hl(z)) +

∞∑
k=1

yk (gk(z)− hl(z))

= xlhl(z) +

∞∑
k=l+1

xkhk(z) +

∞∑
k=1

ykgk(z)

=

∞∑
k=l

xkhk(z) +

∞∑
k=1

ykgk(z).

For our next result, we define the convolution of two harmonic functions. For
harmonic functions fn(z) of the form (1.3) and

Fn(z) = z +

∞∑
k=2

|Ak|zk + (−1)n
∞∑
k=1

|Bk|zk

we define their convolution

(fn ∗ Fn)(z) = fn(z) ∗ Fn(z) = z +

∞∑
k=2

|akAk|zk + (−1)n
∞∑
k=1

|bkBk|zk, (2.5)

using this definition, we obtain the convolution properties of the classRH(n, q, β, λ, ci).

Theorem 2.4. Let fn(z) given by (1.6) and Fn(z) of the form

Fn(z) = z +

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

|Ak|zk + (−1)
n

∞∑
k=1

|Bk|zk, (2.6)
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be the members of RH(n, q, β, λ, ci), then (fn ∗ Fn)(z) ∈ RH(n, q, β, λ, di), where

di =
c2i (β−1)

[ϕ(i,λ)]n[i]q
.

Proof. The convolution of fn(z) and Fn(z) defined by (1.6) and (2.6), respec-
tively, is given by

(fn ∗ Fn)(z) = z +

l∑
i=2

(
ci (β − 1)

[ϕ (i, λ)]
n
[i]q

)2

zi +

∞∑
k=l+1

|akAk|zk + (−1)
n

∞∑
k=1

|bkBk|zk.

This can also be rewritten as

(fn ∗ Fn)(z) = z +

l∑
i=2

di (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

|akAk|zk + (−1)
n

∞∑
k=1

|bkBk|zk,

where di =
c2i (β−1)

[ϕ(i,λ)]n[i]q
. Since 0 ≤ ci ≤ 1, 0 ≤

∑l
i=2 ci ≤ 1, this suggests that

0 ≤ di ≤ 1, 0 ≤
∑l

i=2 di ≤ 1. To show that (fn ∗ Fn)(z) ∈ RH(n, q, β, λ, di) it is
sufficient to prove that the coefficients of (fn ∗Fn)(z) satisfy the required condition
given in Theorem 2.1. For Fn(z) ∈ RH(n, q, α, λ, ci), we note that |Ak| ≤ 1 and
|BK | ≤ 1. Now, for the convolution function (fn ∗ Fn)(z) we have

∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

|akAk|+
∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

|bkBk|

≤
∞∑

k=l+1

[ϕ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

|bk|

≤ 1−
l∑

i=2

ci, (since fn ∈ RH(n, q, β, λ, ci)),

≤ 1−
l∑

i=2

di, (since 0 ≤ di ≤ ci ≤ 1).

Therefore (fn ∗ Fn)(z) ∈ RH(n, q, β, λ, di).
Next, we shall discuss the convex combination of the class RH(n, q, β, λ, ci).

Theorem 2.5. The family RH(n, q, β, λ, ci) is closed under convex combination.

Proof. For j = 1, 2, 3... let fnj (z) ∈ RH(n, q, β, λ, ci) where fnj (z) is given by

fnj
(z) = z +

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

|akj
|zk + (−1)n

∞∑
k=1

|bkj
|zk.

Then by Theorem 2.1, we have

∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

|akj |+
∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

|bkj | ≤ 1−
l∑

i=2

ci.

For

∞∑
j=1

tj = 1, 0 ≤ tj ≤ 1, the convex combination of fnj (z) may be written as

∞∑
j=1

tjfj(z) = z+

l∑
i=2

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi+

∞∑
k=l+1

 ∞∑
j=1

tj |akj |

 zk+(−1)n
∞∑
k=1

 ∞∑
j=1

tj |bkj |

 zk.
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Then by Theorem 2.1, we have

l∑
i=2

ci +

∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

 ∞∑
j=1

tj |akj
|

+

∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

 ∞∑
j=1

tj |bkj
|


=

l∑
i=2

ci +

∞∑
j=1

tj

( ∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

|akj
|+

∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

|bkj
|

)

≤
l∑

i=2

ci +

∞∑
j=1

tj

(
1−

l∑
i=2

ci

)
= 1.

Therefore

∞∑
j=1

tjfnj
(z) ∈ RH(n, q, β, λ, ci).

3. An Integral Operator

Let fn(z) = h(z) + gn(z) ∈ SH be given by (1.3) then Fn(z) defined by relation

Fn(z) =
c+ 1

zc

∫ z

0

tc−1h(t)dt+
c+ 1

zc

∫ z

0

tc−1gn(t)dt, (c > −1). (3.1)

Theorem 3.1. Let fn(z) = h(z) + gn(z) ∈ SH be given by (1.6) and fn(z) ∈
RH(n, q, β, λ, ci) then Fn(z) be defined by (3.1) also belong to RH(n, q, β, λ, ρi),
where ρi =

c+1
c+i ci.

Proof.
From representation of Fn(z) we have

Fn(z) = z +

l∑
i=2

c+ 1

c+ i

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

c+ 1

c+ k
|ak|zk + (−1)n

∞∑
k=1

c+ 1

c+ k
|bk|zk.

The function Fn(z) can also be written as

Fn(z) = z +

l∑
i=2

ρi (β − 1)

[ϕ (i, λ)]
n
[i]q

zi +

∞∑
k=l+1

c+ 1

c+ k
|ak|zk + (−1)n

∞∑
k=1

c+ 1

c+ k
|bk|zk,



10 S. PORWA, N. SHUKLA AND O. MISHRA JFCA-2023/14(2)

where ρi =
c+1
c+i ci. Since 0 ≤ ci ≤ 1, 0 ≤

∑l
i=2 ci ≤ 1, this suggests that 0 ≤ ρi ≤ 1,

0 ≤
∑l

i=2 ρi ≤ 1. Now

∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

(
c+ 1

c+ k
|ak|
)
+

∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

(
c+ 1

c+ k
|bk|
)

≤
∞∑

k=l+1

[ϕ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

|bk|

≤1−
l∑

i=2

ci, (Using inequality (2.2) of Theorem 2.1, we have

≤1−
l∑

i=2

ρi, (since 0 ≤ ρi ≤ ci ≤ 1).

Thus Fn(z) ∈ RH(n, q, β, λ, ρi).

Definition 3.2. Let fn = h+ gn be defined by (1.3). Then, the q-Jackson integral
operator Fnq

is defined by the relation

Fnq
(z) =

[c]q
zc+1

∫ z

0

tch(t)dqt+
[c]q
zc+1

∫ z

0

tcg(t)dqt, (3.2)

where [c]q is the q-number defined by (1.4).

Theorem 3.3. Let fn(z) = h(z)+gn(z) be given by (1.6) and fn(z) ∈ RH(n, q, β, λ, ci).
Then Fnq

(z) defined by (3.2) is also in the class RH(n, q, β, λ, ϵi).

Proof. Let fn(z) be defined by (1.6) belongs to the class RH(n, q, β, λ, ci). Then
by Theorem 2.1, the condition (2.2) is satisfied.

From the representation (3.2) of Fnq
, it follows that,

Fnq
(z) = z+

l∑
i=2

[c]q
[c+ i+ 1]q

ci (β − 1)

[ϕ (i, λ)]
n
[i]q

zi+

∞∑
k=l+1

[c]q
[k + c+ 1]q

|ak|zk+(−1)n
∞∑
k=1

[c]q
[k + c+ 1]q

|bk|zk.

The function Fn(z) can also be written as

Fnq (z) = z+

l∑
i=2

ϵi (β − 1)

[ϕ (i, λ)]
n
[i]q

zi+

∞∑
k=l+1

[c]q
[k + c+ 1]q

|ak|zk+(−1)n
∞∑
k=1

[c]q
[k + c+ 1]q

|bk|zk,

where ϵi =
[c]q

[c+i+1]q
ci.

Since

[k + c+ 1]q − [c]q =

k+c∑
i=0

qi −
c−1∑
i=0

qi =

k+c∑
i=c

qi > 0

[k + c+ 1]q > [c]q

or
[c]q

[k + c+ 1]q
< 1.

Using the above result, we observe that 0 ≤ ϵi ≤ 1, 0 ≤
∑l

i=2 ϵi ≤ 1, since

0 ≤ ci ≤ 1, 0 ≤
∑l

i=2 ci ≤ 1. Now
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∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

[c]q
[k + c+ 1]q

|ak|+
∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

[c]q
[k + c+ 1]q

|bk|

∞∑
k=l+1

[ϕ(k, λ)]n [k]q
β − 1

|ak|+
∞∑
k=1

[ϕ(k, λ)]n [k]q
β − 1

|bk|

≤ 1−
l∑

i=2

ci, (Using inequality (2.2) of Theorem 2.1, we have

≤ 1−
l∑

i=2

ϵi, (since 0 ≤ ϵi ≤ ci ≤ 1).

Thus the proof of Theorem 3.3 is established. □

4. Concluding Remark

In this paper, authors obtain results regarding coefficient inequality, extreme
points, and bounds for harmonic functions belonging to the class defined in this
article. We also obtain convolution and convex combinations for this class. Finally,
we also discuss a class preserving integral operator and q− Jackson type integral
operator. We conclude that these results play an important role in the theory of
harmonic univalent functions, especially for functions with fixed second coefficients
or fixed finitely many coefficients associated with q− calculus.
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