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Abstract. Childhood vaccination programs have had a dramatic impact on

reducing child mortality worldwide. We introduce fractional-order into A SIR
model that monitors the temporal dynamics of a childhood disease in the pres-
ence of preventive vaccine is presented in this paper. Generalized Euler method

(GEM) is considered in this paper to obtain an analytic approximate solution
of this model. The obtained results proved that the disease will persist within
the population if the vaccination coverage level is below a certain threshold.

1. Introduction

Although the use of preventive vaccines has dramatically reduced the incidence
of infectious diseases among children, childhood diseases remain an important pub-
lic health problem. Decreased immunization coverage among children together
with irregular supply of preventive vaccines are considered to be the major fac-
tors associated with the resurgence of numerous childhood diseases [1]. For some
childhood diseases, such as Measles, Rubella and Chicken pox, preventive vaccines
(administered to children who have not yet been infected) may induce a permanent
immunity against the diseases. A universal effort to extend vaccination coverage to
all children began in 1974, When the World Health Organization (WHO) founded
the Expanded Program on Immunization (EPI). Mathematical models, of deter-
ministic type, have often been used to provide deeper insights into the transmission
dynamics of childhood diseases and to evaluate control strategies [4,5,15]. In the
SIR model presented in this paper, the population that is involved in the spread
of an infection is split into three epidemiological classes: a susceptible group (S),
an infected group (I), and a removed group (R) denoting vaccinated as well as
recovered people [10,13] with permanent immunity. This model assumes that the
efficacy of the vaccine is 100% and the natural death rates µ in the classes remain
unequal to births, so that the population size N is realistically not constant. Cit-
izens are born into the population at a constant birth rate π with extremely very
low childhood disease mortality rate. We denote the fraction of citizens vaccinated
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at birth each year as P (with 0 < P < 1) and assume the rest are susceptible.
A susceptible individual will move into the infected group through contact with
an infected individual, approximated by an average contact rate β. An infected
individual recovers at a rate γ, and enters removed group. The removed group
also contains people who are vaccinated [12]. The differential equations for the SIR
model are

dS

dt
= (1− P )πN − β

SI

N
µS,

dI

dt
= β

SI

N
− (γ + µ)I, (1)

dR

dt
= PπN + γI − µR.

Where N = S + I + R, and the parameters µ, π, β, γ are assumed to be positive.
By adding the three equations of the above system (1), we obtain

dN

dt
= (π − µ)N,

so that we are now dealing with a varying total population [12]. The groups can be
scaled by population N using the new variables, s = S/N, i = I/N , and r = R/N .
The population is now normalised, meaning s + i + r = 1, and we have the new
system:

ds

dt
= (1− P )π − βsi− πs,

di

dt
= βsi− (γ + µ)i, (2)

dr

dt
= Pπ + γi− µr.

The rest of the paper is organized as follows. Section 2 gives an idea about the
fractional calculus. Generalized Taylor’s formula is discussed in section 3. In section
4, a summary about the Generalized Euler method is presented. A fraction order
is introduced to the presented model in section 5. Numerical results are reported
in section 6.

2. Fractional calculus

Although fractional derivatives have a long mathematical history [8], for many
years they were not used in biology or physics. One possible explanation of such
unpopularity could be that there are multiple nonequivalent definitions of fractional
derivatives [9]. Another difficult is that fractional derivatives have no evident geo-
metrical interpretation because of their nonlocal character [10]. It was found that
various; especially interdisciplinary applications can be elegantly modeled with the
help of the fractional derivatives. For example, the nonlinear oscillation of earth-
quake can be modeled with fractional derivatives, and the fluid-dynamic traffic
model with fractional derivatives can eliminate the deficiency arising from the as-
sumption of continuum traffic flow. However, during the last ten years fractional
calculus starts to attract much more attention of physicists and mathematicians
[14]. In biology, it has been deduced that the membranes of cells of biological or-
ganism have fractional-order electrical conductance [6] and then are classified in
groups of non-integer order models. FODE are naturally related to systems with
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memory which exists in most biological systems. Also, they are closely related
to fractals, which are abundant in biological systems [8,9]. We first give the defi-
nition of fractional-order integration and fractional-order differentiation [11]. For
the concept of fractional derivative, we will adopt Caputo’s definition, which is a
modification of the Riemann-Liouville definition and has the advantage of dealing
properly with initial value problems.
definition 1. The fractional integral of order α > 0 of a function f : R+ → R is
given by

Jαf(x) = 1
Γ(α)

∫ x

0
(x− t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x).

Hence we have

Jαtγ =
Γ(γ + 1)

Γ(α+ γ + 1)
tα+γ , α > 0, γ > −1, t > 0

Definition 2. Riemann-Liouville and Caputo fractional derivatives order α of a
continuous function f : R+ → R is given respectively by

Dα
∗ f(x) = Dm(Jm−αf(x)),

Dαf(x) = Jm−α(Dmf(x)), Where m− 1 < α ≤ m,m ∈ N.

The definition of fractional derivative involves an integration which is non-local
operator (as it is defined on an interval) so fractional derivative is a non-local
operator. In other word, calculating time-fractional derivative of a function f(t) at
some time t = t1 requires all the previous history, i.e. all f(t) from t = 0 to t = t1.

3. Generalized Taylor’s formula

In this section we introduce a generalization of Taylor’s formula that involves
Caputo fractional derivatives. This generalization is presented in [17]. Suppose
that Dkα

∗ f(x) ∈ C(0, a], for k = 0, 1, · · · , n+ 1 where 0 < α ≤ 1. Then we have

f(x) =
n∑

i=0

xiα

Γ(iα+ 1)
(Diα

∗ (0+) +
(D

(n+1)α
∗ )(ξ)

Γ((n+ 1)α+ 1)
x(n+1)α (3)

With 0 ≤ ξ ≤ x, ∀x ∈ (0, a].
In case of α = 1, the generalized Taylor’s formula (5) reduces to the classical
Taylor’s formula.

4. Generalized Euler method (GEM)

Most nonlinear fractional differential equations do not have analytic solutions,
so approximations and numerical techniques must be used [10]. The decomposition
method (ADM) and the variational iteration method (VIM) are relatively new
approaches to provide an analytical approximate solution to linear and nonlinear
problems, and they are particularly valuable as tools for scientists and applied
mathematicians, because they provide immediate and visible symbolic terms of
analytic solutions, as well as numerical approximate solutions to both linear and
nonlinear differential equations. In recent years, the application of the ADM, VIM,
[11,13] in linear and nonlinear problems has been developed. On the other hand,
these methods are effective for small time, i.e. t << 1, however the standard
homotopy perturbation method (HPM) cannot solve the problem for larger time
and in fact the solution of the chaotic system using HPM is an open problem
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[13]. Nevertheless by chance, there are cases at which these methods give good
approximation for a large range of t [4]. A few numerical methods for fractional
differential equations have been presented in the literature [7,10]. However many
of these methods are used for very specific types of differential equations, often just
linear equations or even smaller classes. In [16], Odibat and Momani derived the
generalized Euler’s method that we have used for the numerical solution of initial
value problems with Caputo derivatives. The method is a generalization of the
classical Euler’s method. Consider the initial value problem

Dα
∗ y(t) = f(t, y(t)), y(0) = y0, 0 < α ≤ 1, t > 0 (4)

Let [0, a] be the interval over which we want to find the solution of the problem
(4). In actuality, we will not find a function y(t) that satisfies the initial value
problem (4). Instead, a set of points {(tj , y(tj))}is generated, and the points are
used for our approximation. For convenience we subdivide the interval [0, a]into
k subintervals [tj , tj+1] of equal width h = a/k by using the nodes tj = jh, for
j = 0, 1, · · · , k. Assume that y(t), Dα

∗ y(t), and D2α
∗ y(t) are continuous on [0, a] and

use the generalized Taylor’s formula (3) to expand y(t) about t = t0 = 0. For each
value t there is a value c1 so that

y(t) = y(t0) + (Dα
∗ (t))(t0)

tα

Γ(α+ 1)
+ (D2α

∗ y(t))(c1)
t2α

Γ(2α+ 1)
(5)

When (Dα
∗ y(t))(t0) = f(ty, (t0)) and h = t1 are substituted into equation (5), the

result is an expression for y(t1):

y(t1) = y(t0) + f(t0, y(t0))
hα

Γ(α+ 1)
+ (D2α

∗ y(t))(c1)
h2α

Γ(2α+ 1)

If the step size h is chosen small enough, then we may neglect the second-order
term (involving h2α) and get

y(t1) = y(t0) +
hα

Γ(α+ 1)
f(t0, y(t0))

The process is repeated and generates a sequence of points that approximates the
solution y(t). The general formula for generalized Euler’s method (GEM) when
tj+1 = tj + h is

y(tj+1) = y(tj) +
hα

Γ(α+ 1)
f(tj , y(tj)) (6)

for j = 0, 1, · · · , k−1. It is clear that if α = 1, then the generalized Euler’s method
(6) reduces to the classical Euler’s method [2,3].

5. Fractional model derivation

Now we introduce fractional-order into the model (1). The new system is de-
scribed by the following set of FDEs of order α1, α2, α3 > 0:

Dα1(s) = (1− P )π − βsi− πs,

Dα2(i) = βsi− (γ + π)i, (7)

Dα3(r) = Pπ + γi− πr.

This paper attempts to find a numerical solution for a general class of fractional
order model of childhood diseases (7). For this purpose the paper summarizes



JFCA-2013/4(3S) THE EFFECT OF VACCINATION ON THE DYNAMICS 5

specific techniques for generalized Euler method (GEM) [16,17], as well as the
applications of Caputo fractional calculus.

The reason of using fractional order differential equations (FOD) is that FOD
are naturally related to systems with memory which exists in most biological sys-
tems. Also they are closely related to fractals which are abundant in biological
systems. The results derived of the fractional system (7) are of a more general
nature. We would like to put your attention that time fractional derivatives change
also the solutions we usually get in standard system (2). The concept of fractional
or non-integer order derivation and integration can be traced back to the genesis of
integer order calculus itself [7]. Most of the mathematical theory applicable to the
study of non-integer order calculus was developed through the end of 19th century.
However it is in the past hundred years that the most intriguing leaps in engineering
and scientific application have been found. The calculation technique has in some
cases had to change to meet the requirement of physical reality. The derivatives
are understood in the Caputo sense. The general response expression contains a
parameter describing the order of the fractional derivative that can be varied to
obtain various responses.

6. Numerical results and discussion

In this section, we will study the effect of vaccination on the dynamics of a
childhood disease described by the SIR model (7) using GEM. If we consider that
h=0.1 in (6), and α1 = α2 = α3 = α in (7) the obtained results are shown in
Figures 1,2,3.

Table. 1. Effect of vaccination coverage at various parameter values (Pc = 0.4625).
case s0 i0 r0 β γ π P Rv Comments
1 1 0 0 0.8 0.03 0.4 0.9 0.18604 E0 stable (disease eradication)
2 0.8 0.2 0 0.8 0.03 0.4 0.9 0.18604 E0 stable (disease eradication)
3 0.8 0.2 0 0.8 0.03 0.4 0.3 1.30223 E0 stable (no eradication)
4 0.8 0.2 0 0.8 0.03 0.4 0 1.86046 E0 stable (no eradication)

7. Conclusion

In this paper, generalized Euler method (GEM) was implemented to describe
the effect of vaccination on the dynamics of a childhood disease described by the
fractional SIR model (7). The results show that the solution continuously depends
on the time-fractional derivative and on the values of the parameters described in
table 1. The figures1,2,3 describe the four presented cases in table 1. These figures
show the effect of the high-vaccination coverage (P > Pc) on the disease free initial
population groups. In case 1, the population of the susceptible group decreases
with time while that of the removed group gradually increases due to inclusion of
vaccinated susceptible group. The entire population generally remains disease free
with all the time and the endemic equilibrium remains stable.
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The figures that depicts Case 2, illustrates the impact of high vaccination cov-
erage on the initial population groups with low level of infective group. The pop-
ulations of the susceptible and infective groups decrease with time while that of
the removed group increases due to inclusion of vaccinated and recovered people
with permanent immunity and the disease outbreak ends. This clearly shows that a
disease free equilibrium is achievable once the vaccination coverage level is greater
than the threshold value (i.e.P > Pc).

Case 3 which is shown in the presented figures, illustrates the effect of low vacci-
nation coverage on the initial population groups with low levels of infective group.
The population of the susceptible group decreases with time. A small increase in
the population of removed group is also noticed. However, it is noteworthy that
the population of infective group will never disappear with time and the endemic
situation persists.

Case 4 is shown in the presented Figures and the impact of initial low levels
of infective group on the vaccination free population (P < Pc) is illustrated. As
expected, the population of susceptible group decreases while that of infective group
temporally increases. The disease rapidly spread to the entire population. The only
contribution to removed group is the very small proportion of recovered people
with permanent immunity. It is observed that the disease free equilibrium is stable
provided the vaccination coverage level exceeds a certain threshold Pc = (β − γ −
π)/β = 0.4.

As a definition of fractional calculus: limα→1D
αf(t) = Df(t) has been provided.

In the presented problem, the susceptible group s(t), the infected group i(t), and
the removed group r(t), have been obtained, the results obtained show that when
α → 1 the solution of the fractional model (7) sα(t), iα(t), rα(t), reduce to the
standard solution s(t), i(t), r(t).

In this paper, we modified the ODE model (1) into a system of fractional-order
[7]. Our studies on the use of GEM for solving the presented SIR model shows
that GEM is a good tool in solving the biological system. One of the advantages
of GEM is its capability of presenting us with continuous solutions, thus giving us
better understanding, insight as well as detail over the time interval.
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