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EXISTENCE OF A UNIQUE CONTINUOUS SOLUTION FOR A
QUADRATIC INTEGRAL EQUATIONS

A. M. A. EL-SAYED, M. SH. MOHAMED, N. A. O. BUHALIMA

ABSTRACT. In this paper, we are concerned with the existence of a unique
continuous solution for the quadratic integral equation .

t t
z(t) = a(t) +)\/O k1(t, s)f1(s,az(s))ds/0 ka(t, s)f2(s,z(s))ds, t € [0,T)]

where f1 and f2 are two measurable lipschitz functions.

1. INTRODUCTION

Quadratic integral equations(QIES) are often applicable in the theory of radia-
tive transfer, kinetic theory of gases, in the theory of neutron transport and in the
traffic theory.
The quadratic integral equations can be very often encountered in many applications(see[1]-
16]).
In some papers (see[3]-[4]) the authors studied the existence of unique solutions.

Here we are concerned with the nonlinear quadratic integral equation
t t
o(t) = alt) + )\/ hat, s)fl(s,x(s))ds/ ka(t, ) fols, a(s))ds, t € [0,T]. (1)
0 0

The existence of a unique continuous solution z € C[0,7T] well be proved. Some
initial value problems will be concerned as an application.

2. MAIN RESULTS

Consider the following assumptions
(i) a :I =[0,T] — R is continuous, a = sup |a(t)|, t € [0,T] .
(ii) f; : I x R — R are measurable in ¢ for all x € R and satisfy the Lips-
chitz condition with respect to the second argument z for almost all ¢ € [0,T],

| fitt,z) = fitt,y) | < Llz—yl
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for each (t,z), (t,y) € I x R.

(iii) There exist two functions m; € L0, 7] such that.
filto) | < milt) ) i=1,2

(iv) k; :[0,T] x R — R are continuous in t € [0,7] for every s € [0,7] and
measurable in s € [0,7] for all t € [0,7] such that.

[7 [ki(t,s)|ma(s)ds < K, i=1,2.

Now for the existence of a unique continuous solution of the quadratic integral
equation (1) we have the following theorem.

Theorem (2.1) Let the assumptions (i)-(iv) are satisfied. If 2 [\| L K2 T < 1,
then the quadratic integral equation (1) has a unique continuous solution z € C10,T].

Proof. Define the operator F' associated with the quadratic integral equation
(1) by
Fa(t) = a(t) + A [] ki (t,5) fi(s,(s)) ds- [] ko (t,5) fa(s,2(s)) ds.

The operator F' maps C[0,T] into itself.
Let x € C[0,T], let t1, to € [0,T], t1 < ty and |ta — t1] < J, then

[Fa(tz) — Fo(t)| = la(tz) — a(t1)

oA kl(tg,s)fl(s,x(s))ds/o2k2(t2,s)f2(s,x(s))ds

0

= A [ it ao)ds [ k(b8 s o)

< la(tz) —a(t1)]
to

+ |)\/ k1 (ta,s)f1(s, z( ds/ ka(ta, s) fa(s,x(s))ds
0 0
ty

— )\/ kl(tl, fl S, SC / kg tl, f2 S I(S))dS
0 0
t2 tl

+ /\/ k1 (ta, ) f1(s, 2( ds/ ka(t1,8) fa(s,x(s))ds
0 0
ta

- /\/ k1(ta, ) f1(s, x( ds/ ko(t1,8) f2(s, x(s))ds]
0 0

< altz) — a(ty)]

+ |AA 1 kg(tl, f2 S {E A2k1 tg, f1 8 .’K(S))dS
- /Olkl(tl,s)fl(s,x(s))ds]

A [t (s ()i bt ) ol a()ds

B /0 1 ka(t1,s) f2(s, z(s))ds]|
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IN

| alts) — alt))

O / (. )1 a5, 2(5)Ids / (s, 8) — B (b1, 9)|[f1 (5, 2(5)) ds
+ o (b1, ) a5, 2(5)) | ds / a (t2, )| fa (5. 2(5)) | ds
T / a (t2, 9)| | fu (s, 2(s)) s / kalta, ) — K (t1, 8)| fals, 2(s))ds
O / a (t2, 9)| 1 (s, 2(s)) s / o (t2, 9)| | fals, 2(s))|ds

< la(t2) = a(t1)]

tl tl
+ |)\|/ |k2(t1,s)|m2(s)ds./ |k1(ta, s) — k1(t1, s)|m1(s)ds
0 0
t1 to
+ |>\|/ |k2(t1,s)|m2(s)ds./ s (t2, ) [ma (s)ds
0 ty
to t1
+ |)\|/ |k1(t2,s)|m1(s)d8./ |ka(ta,s) — ka(t1, s)|ma(s)ds
0 0
tg t2
+ |)\|/ |k1(t2,s)|m1(s)d5./ |ka(ta, s)|ma(s)ds
ty

< altz) —a(t)]

+ |A|K/ ki (t, 5) — ku (t1, ) ma (s)ds
+ Al K. |k1(t2, s)|my(s)ds
t1

ty
+ | K./ |ka(ta, s) — ka(t1, s)|ma(s)ds
0

ta
I K./ Va2, ) ma (s)ds
ty

This proves that F : C[0,T] — C[0,T].
Now to prove that F' is contraction, we have the following.
Let z, y € C[0,T], then

Fa(t) — Fy(t)] = A / Ky (5) fa(s,2(s)) ds / Ky (£.5) fols,2(s)) ds
=y "k (4s) Fuls,y(s) ds / ks (4,5) fols,y(s)) d



4 A. M. A. EL-SAYED, M. SH. MOHAMED, N. A. O. BUHALIMA JFCA-2012/3(S)

| bt 5) fals,2(s)) ds / kol 5) Fals,2(5)) ds
- it 5) fals,y(s) ds / bty ) folo (s)) ds
+ ) fals, 2 (s)) ds / k) Folo (s)) ds
- bt 5) fals, 2(s)) ds / kalts ) Falo, () ds]

- I / Fi(t5) fa(s,2(s)) ds / ka (6,5) [fals,2(5)) — fols, y(s))] ds
oA / Ka(t, s) fals,y(s)) ds / Br (t5) [fi(s,2(5)) — (s, u(s))] ds]

IN

N / ka1, 9)] (s, 2(s))] ds / ks, 9)] 1 fals,2(5)) — fals. u(s))] ds
T / ka(t, )] fols,y(s))] ds / ko (£,9)] (5. 2()) — fu(s, u(s))] ds

IN

A K /0 kL |o(s) — y(s)| ds

+ NK /0 kL |x(s)—y(s)| ds

IN

A K2 L / l2(s) — y(s)]| ds

O K2L/O (2(s) — y(s)| ds

IN

2\ L K2T ||z —yl|.

This means that
|[Fe— Fy|| < 2 |\ L K2 T ||z - yl|.

Then by using Banach fixed point Theorem (see[15]), the operator F' has a unique
fixed point = € CI[0,T] .

This completes the proof of existence a unique solution z € C[0,T] of the qua-
dratic integral equation (1).1

When ki = ko = k and f; = fo = f, we have the following corollary.
Corollary(2.2) Let the assumpations of theorem (2.1) are satisfied .
If 2|\ L K?T < 1, then the quadratic integral equation

z(t) = a(t) —|—)\(/O k(t,s)f(s,z(s))ds)?, t € [0,T]. (2)
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has a unique continuous solution z € C|0,T].

Letting k =1, a(t) =0 and A=1in ,then we have the following corollary.
corollary(2.3) Let the assumpations (ii)-(iii) of theorem (2.1) are satisfied .
If 2 LT < 1, then the quadratic integral equation

£(t) = ( / f(s,2(s))ds)?, t € 0,7 3)

has a unique continuous solution z € C|0,T].

Now let k1(t) = ka2(t) = 1 in equation (1) then we have the following corollary,
Corollary(2.4) Let the assumptions (i)-(iii) of Theorem (2.1) are satisfied, then
the quadratic integral equation

¢ ¢
z(t) = a(t) + )\/ fi(s,z(s)) ds/ fa(s,2(s)) ds.
0 0
has the existence of a unique continuous solution = € C[0,T].

3. INITIAL VALUE PROBLEMS

Consider now the initial value problem

dvdf(t) = f(t,z(t)), t >0 (4)

with the initial condition

z(t) =0 ()
We have the following corollary.
Corollary(3.1) The initial value problem and is equivalent to the quadratic
integral equation
Proof Let z(t) be a solution of the problem (4)-(5)), then

VO _ it ).

dt

Integrating, we get

\/x(t)—\/x(O):/O F(s,2(s))ds

but z(t)= 0, then

VD) = / f(s,2(s))ds

and

o) = ([ fs.as)as)”

Let z(t) be a solution of (3)), then

\/x(t):/o f(s,z(s))ds
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Differentiating, we get

dr/x(t)

S = e, (0).

Also at t =0, we find that

Mm=p4fmxwmﬂf=o-

Now we have the following corollary.

Corollary(3.2) The initial value problem and has a unique continuous so-
lution =z € C10,T].

Proof.

From the equivalent of the initial value problem — and the quadratic inte-
gral equation (3])(Corollary 3.1),we deduce that from corollary (2.3) that the initial
value problem 1' has a unique continuous solution x € C[0,7].m
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