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EXISTENCE RESULTS FOR A COUPLED SYSTEM OF
NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH
THREE-POINT BOUNDARY CONDITIONS.

M. GABER, M.G. BRIKAA.

ABSTRACT. This paper studies a coupled system of nonlinear fractional differ-

ential equation with three-point boundary conditions. Applying the Schauder
fixed point theorem, an existence result is proved for the following system

Du(t) = f(t,v(t),D™v (1)), te(0,1),
DBy (t) = g(t,u(t),D"u(t)), t e (0,1),
w(0) = 0,D%(1)=6D%(ny), v(0)=0,D%(1)=6D%(n),

where «, 8, m, n, n, §, 0 satisfy certain condition.

1. INTRODUCTION

Fractional differential equations arise in many engineering and scientific disci-
plines as the mathematical modelling of systems and processes in the fields of
physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer-
rheology, etc. involves derivatives of fractional order. Fractional differential equa-
tions also serve as an excellent tool for the description of hereditary properties
of various materials and processes. In consequence, the subject of fractional dif-
ferential equations is gaining much importance and attention. For details, see
[2, 4, 6, 8,9, 10, 11, 13] and the refrences therein.

On the other hand, the study of coupled systems involving fractional differential
equations is also important as such systems occur in various problems of applied
nature, for instance, see [5, 7]. Recently, in [12], the existence of nontrivial solutions
was investigated for a coupled system of nonlinear fractional differential equations
with two-point boundary conditions by using Schauder’s fixed point theorem. Ref.
[3] established the existence of a positive solution to a singular coupled system
of fractional order. The existence of nontrivial solutions for a coupled system of
nonlinear fractional differential equations with three-point boundary conditions was
investigated in [1] by using Schauder’s fixed point theorem.
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In this paper, we consider a three-point boundary value problem for a coupled
system of nonlinear fractional differential equation given by

Du(t) = [f(tw(t),D™v(t)), te(0,1),
Du(t) = gft, ()7D" (®)) te(0,1), (1)
uw(0) = 0,D% (1) =6D%(n), v (0) = 0,D% (1) = 6D% (1),

Wherel§o¢,5<2,m,n,5>0,0<17<1,ozfnzl,ﬂfmzl,énw1 <1,
o’ <1,0<0<1,a—0-1>0,8—-0—1>0, D is the standard Riemann-
Liouville fractional derivative and f, g: [0,1] x R X R — R are given continuous
function.

The organization of this paper is as follows. In Section 2, we present some
necessary definition and preliminary results that will be used to prove our main
results. The proofs of our main results are given in Section 3. In Section 4, we will

give an example to ensure our main result.

2. PRELIMINARIES

For the convenience of the reader, we present here the necessary definition from
fractional calculus theory and preliminary results.

([9]) The Riemann-Liouville fractional integral of order ¢ > 0 of function f: (0,00) —
R is given by

o L[
If(t)if(q)/o (tfs)lf‘fd’

provided that the integral exists.
([9]) The Riemann-Liouville fractional derivative of order ¢ > 0 of function
f: (0,00) = R is given by

where n = [¢] + 1 and [q] denotes the integral part of number ¢, provided that the
right side is pointwise defined on (0, 00) .
([9]) Let n — 1 < o« < m, D*u (t) exists for ¢ € (0,1). Then

I“Du (t) = u (t) + Ot + Cot® 2 + ... + Cpt®™™

The following properties are useful for our discussion: I*1” f (t) = 1°tPf (1),
DeIcf(t) = f(t),a>0,6>0,f€ L (0,1); I*°D*f(t) = f(t),0 < a < 1,
f@)eCl0,1] and D*f (t) € C(0,1)N Ly (0,1); I*: C[0,1] — C[0,1], a > 0.

Let C (J) Denote the space of all continuous functions defined on J = [0,1]. Let
X =

{u(t) : we C(J) and D"u € C (J)} be a Banach space endowed with the norm
llul| y = maxies|u(t)| + maxies |[D™u(t)|, where 1 < v < 2, 0 < n < a— 1,
(see [12] Lemma 3.2), and Y = {v (t) : v € C'(J) and D™v € C'(J)} be a Banach
space equipped with the norm |[v||y, = maxcs |v (t)| + maxies |[D™v (t)|, where
1<B<20<m<B—1 Thus, (X xY, [|.|xyy) is a Banach with the norm
defined by |[(u,v)|| xy = max {||jul|y, [|v[y} for (u,v) € X x Y.
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Let y € C (J) be a given function and 1 < « < 2. Then the unique solution of
Du(t) = y(t), te(0,1), (2)
w(0) = 0, D% (1)=06D(n), (3)
is given by

1
w) = [ Kitts)y()ds,
0
where K (t,s) is the Green’s function given by

1 {Kll(t7s)70§t§77

Ky (t,s) = (1 —oo—0-1)T (a) | Ki2(t,s),n<t<l1 )

[(t —5)* (1 —ome) + St =) T A=) o< <t

a—1

Ky (t,s) = {(51?&71 m—s)* "t 1 - s)a_g_l} t<s<n

[(t — )t (1—én>=0=1) + St =) T - s)a_g_l} ,0<s<n
Ko (t,s) = [(t —s)* (1= oot - - s)aie*l} n<s<t

a—1

1= s <1

Proof. For Cy, Cy € R, the general solution of (2) can be written as

u(t) = 1Y@ +Cit" + 0ot
/t (=9 (s)ds+ Cyt™ +Cot™ (5)
o T (a) Yy 1 2

The boundary condition « (0) = 0 implies that Co = 0. Thus
t a—1
(t — S) a—1
)= [ ——— ds + Cit
wi) = [ (s 0y
By lemma 2, we have

1 ' a—0—-1 I'(a) a0
F(a_a)/o(t—s) ) ds + O Vgt

By the boundary condition

DO (t) =

DO (1) = 6D%u (n)

| ! o @) & " o
m/o (1—3) 0 y<8)ds+clm = m/o (T}—S) 91y(5)d5
O () 401
o
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5 n (77 _ S)Oé 0—1 1 /1 (1 o S)Q*H*l
- ds— d
T e Sl e T
Thus, the unique solution of (2) and (3) is

u(t) = A%y(s)ds

ot m(p—s)* 0t
T ) v

a—1

(
t 1 (1 _ S)@-Q—l
]__577a 0— 1)/0 F(Oé) y(s)ds

:/Klts s)ds

where K7 (t, s) is given by (4). O
Similarly, the general solution of
Div(t) = y(t) ,te(0,1),
v(0) = 0, D%(1)=6D%n),

is

/KQtS s)ds

where K5 (t,s) can be obtained from Kj (t,s) by replacing o with 8. Let K7,
K5 denotes the Green’s function for the boundary value problem (1).
Consider the coupled system of integral equation

w
~—
~—

QL
\El)

{ u (t) fOKlts)f( v (s), DPu(
(t) fo Ks (t,8) g (s,u(s),Du(s))ds.

3. MAIN RESULTS

Assume that f, g: Jx Rx R — R are continuous function. Then (u,v) € X XY
is a solution of (1) if and only if (u,v) € X x Y is a solution of (6).

Proof. The proof is immediate from lemma 2, so we omit it. ([l
Let us define an operator F': X XY — X XY as

F(u,v) (t) = (Fio (1), Fau (1)),
where

Fyo(t /K1 (t,s) f(s,v(s),DPv(s))ds,  Foult /K2 (t,s)g(s,u(s),Diu(s))ds.

In view of the continuity of K1, Ko, f, g, it follows that F' is continuous. More-
over, by lemma 3, the fixed point of the operator F' coincides with the solution of
(1).

For the forthcoming analysis, we introduce the growth condition on f and g as

(A7) there exists a nonnegative function a (t) € Ly (0, 1) such that
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|f(t,x,y)| < a’(t) tée |1,|P1 + €2 |y|P2 y €1, €2 > 07 0< pP1, p2 < 17
(A2) there exists a nonnegative function b (t) € Ly (0,1) such that

|g(t,l’,y)| < b(t) +51 |$‘Ul +(52 |y|02, (51, 52 > 0, 0<oq, 090 <1.

Let us set the following notations for convenience:

(1=6n*"NT(a—g+1)+[(a—0) (1= +(a—q) (1+n°) ]I (a)

A= (@ 0) (1T (@) T {a—q 1) !
g (=)@ —p+ )+ [(B-0)(1—0y"""1) + (8- p) (14" ")|T'(5)
B0 (1o DT (BT B _pi1) ’

1
m = r?eafA la (s) ki (t,s)|ds
1

_ a—0—1 ' — s a—q—la s)ds
+F(a—q) (1= opo—o-1y [(1—0n )/0 (1=s) (s)d

! a—0—1 K a—0-1
_|_/O (1—5s) a(s)ds+5/o (n—s) a(s)ds],

1
n = Igléjg(/o |b(s) k1 (t,s)|ds
1

— P01 1 — )P () ds
+I‘(ﬂ_p)(1_5nﬁ7671)x[(1 on )/0(1 ) (s)d

1 n
— )P a(s)ds — )P a(s)ds
[ -9t awas s [ -9 ) as,

Define a ball W in the Banach space X x Y as

W={ (u®),v) [ (u(t),v®) e XxY, [[(u®),v®)lxy <R te]}

where R > max {(3A61)ﬁ , (3A€2)ﬁ , (3Bdy) = , (33(52)% , 3m, Sn}
Assume that the assumptions (A1) and (As) hold. Then there exists a solution
for the three-point boundary value problem (1)

Proof. As a first step, we prove that F: W — W.

Fro(t)] = ' [ k910 %) as
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IN

/ |k1 (t,8) f (s,v(s), DPv(s))ds|

IN

/ |k1 (t,8) [a(s) + e |R|”" + e2|R|”?]| ds

/ la(s) ka1 (t,5) + (1 |RI™ + €2 |R|™) ka (2, 5)| ds
0

1 1
/ la (s) k1 (t,8)]ds + (1 |R|™* +62|R|p2)/ |k1 (,5)| ds
0 0

(t—s)*"

= /0 la (s) k1 (t,8)ds + (e1 |R|”* + e2|R|”) [—/0 (o) ds
" D R " (n—s)* """
e e A T e = A
! P1 P2 ta
_ /0 a(s) ks () ds + (@ [RI” + e |RI™) [y
N ' B st et |
(L= (a=0)T(a) (11— 1) (a—0)T(a)
[ o ooy L " (1—an"7?)
_ /O () by ()] ds (@1 R + 62 B [ o 50 (o) T

(1-an")
(1 —=om=0=1)(a—0)T (a)

1
< [ la(s) b (t9) ds+ (e |[RI” + ea |RI™) |
0
and

D () — | P G0 D7 (0) — sy S (5,0 (5), DY () ds
1 6 J = f (s,0(s), DPu (s)) ds) Dot

Faf e (®), Do) = M- q)(E(acgn“*B*l)[fol A= f (s, 0(s) . DPo (s)) ds
5fn - 15“(@) - f(s,v(s),DPv(s))ds]t” "

1
F(a—q)

+ = {/ (1= 8" (@ 6) + (ea B + o [RI™) ds

IA

[ / (t— )" (a(s) + (e [RI™ + e |RI™)) ds

#6 [ =7 (@) + e R o [RI) )
t
— +— a—q—1 d / t — a—q—1 P1 RP2 d
F(a—q)[/( 5) a(s)ds + 0( 5) (1 [RI™ + ez |R|™) ds
1
577 0

+(5/ n—sa =14 ds+5/ )27 (61 |RI” + €5 |R|?) ds}]
0
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1 ! a—q—1 ! _ a—qg—1 1 P2 s
m[/o (1-1s) a(s)ds—i—/o (1-5s) (e1 |R|”* + €2 |R|”*) d

1 1 it ! a—b—
+W{/ (1—s)*""ta(s)ds +/ (1-3)"""" (e |RI”™ + 2 |R|™*) ds
(1 n ) 0 0

0 /0" (=" a(s)ds+6 /0" (n—5)""""" (a1 |RI" + €2 |R|) ds}]

1

—0-1 ! a—q—1
- T (a—q) (1= ono—0- 1)[(1*577 )/ (1—s) a(s)ds

+/01(1—)°”’1 ds+5/ (n—25)""""a(s)ds]

(61‘R|p1+62|R|p2) s oa—60-1 _s a—qg—1 s
T ga a0 [t

+/01 (1—5)6"9‘1ds+6/077 (n—s)"""""ds]]

1

_ — pef-1 ' —8)* 1 g (s)ds
= Ta—ga-speen )/(1 ) ()¢

+/01(1—)°”’1 ds+6/ —5)* " a(s) ds)

(o — )(1—577‘”‘ - 1)+(a—q)(1+6770‘*9)
(a=OT'(a—g+1)(1—on*=0-1)

+ (€1 |R[”" + €2 |R[™?)

Thus,

[Fio ()l = max|Fio ()] + max|DUFo ()] < o+ (@ [B” + e R <
E+&4 8RR

Similarly, it can be shown that ||Fou (t)|ly < v+ (e1|R|”* + e2|R|”*) w2 < R.

Hence, we conclude that ||F' (u,v)] y,y < R. -
Since Fv (t), Fou (t), D1Fyv (t), DIF5u (t) are continuous on J, therefore,

F: W —=W.

Now we show that F' is a completely continuous operator. For that we fix

M = max |f (¢, v (t),DPou(t))], N = r{la}dg (t,u(t), DPu(t))].
€ €

For (u,v) e W, ¢, 7€ J(t <7), we have

1

|Fiv (t) — Fio (1) = ; (k1 (t,8) — k1 (7,5)) f (s,v(s),DPv(s))ds

< [ 10 (65 = by (19 £ 5,009, D70 (5) ds
0

< M/ Ik (t5) — ki (7, 8))| ds

I3 (R (8 8) — ki (ry8)) | ds + [T |( ) ki (7, 8))| ds+

=M k(1 5) — k (7,8) |ds+f\ ,8) = ki (7,9))| ds
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)[jﬁf{(cr——s>a1-—<t——s>“1)(1-—5na—9-1)

+ (TO‘ gt ((1 e S (- s)Oﬁe*l)}ds

tal

+

{

n

{

I'(« 1—(57]0‘91/0
+/ t‘“(

F(oz+1)(1—577fl f-1)

(1—

+

and

1

8)04—9—1

a 60—

[(1=an*=7) (°

—d0(n

— s)a_g_l) + (T — s)w1

(1—6n*0"1)}ds

_ o 1 (1 _ s)aft‘)fl Y S)a7671>}d8 +/ (Ta—l _ ta—l) 1- S)afeﬂ ds]

t
— o0 ds — / (t—s)*" (1—6n*""1)ds
0

1

— s)a_a_1> ds + / (re =t (- 5)* 0t ds]

o 1)

DU f (t,v

-4 n
|DqF1U (t) — DiFv (7_)| _ f

1

(1 57-,a 0— 1)

;(a) - f(s,v(s),

(n—

1 (lis)a—e—l
[ T'(x)

—Df (r,v (1),

-5 f”

+(1 67]0‘ 60— 1)
(n— s

L'(a)

1 (1 5)‘1 6—1
[ 0 T'(a)

(t), DPv (t)
f(s,v

(
f(s,v(s
" (s,0(s), DPu (s)

1 (1—s a—60—1
[ (1-s)

n

(1=~ (7 = t*)]

)
(s), DPv(s))
DPy (s))ds| Dt

DPy (s))
ds|Diro—1

f(s,v(s),DPv(s))ds

1279 (80 (t), DPo () =

Fla—q)(1-on~—f-T)LJo

T'(a)

cyqul

—I*7f (1,v (1), DPv (7))

_g)a—0-1
_5f077 (n )a) £ (s,

v(s), DPv (s))ds]t

1(1 9)(!91

+I‘(a q)(l;(o;)na eal)[ 1() F(a) ff (S7U(S),Dp1) (S)>d5
—5 [ (= ;)(a) f(s,v(s),DPv(s))ds]r*—a71

a—q—1

f(s,v(s),DPv(s))ds
k)

(s), DPv (s)) ds

Flowts) Do ds— [T
(e

I
v(s), D (s))ds -

t (r—s)*" 97
_ft (T—s)*" 97~ f(

o TRt f (s
CE 0 (6 0 (s), DPu (5)) ds
M (a1 — gama1)
Ao o)

1( _ oc@l
/ ds—5/
0 (a—q)

/t (t—s)* !

o I(a—4q)

M (ro—a-1 — gama=1)
(=5 1)

a 60—

a9 1
ds — 9§
_q

+

['(a—q)

t (t—s)™ 9™
0 T(a—q)

" (s,

a91

+
(a—q)
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¢ (=)o~ 97 (rmg)>9
Jy At O ) (5,0 (s), DPo (s)) ds
—ft (TF(STf(s,v(s),Dpv (s))ds

M a—q—l_ta—q—l 1 _ a 6—1 a 0—1
+ (T )/ (L—s) 5/ ———ds
(1 —ona=b-1) o I'(a—q) I'(a—q)
M /t g1 g1 /T g1
< - t—8) I — (=) ds — T—38)"1 (s
< Faogl) (=9 (=)™ )ds— [ (=)

N M (,raqul _ taqul)
(1 =dn=0-1)T'(a—q)
M

t r
Tla—q) /0 ((t — ) (7 — s)a_q_l) ds — /f (r—s)* 97" ds‘
M (ro-a-1 _ ga=a-1) (1 _ gy0-9)
(1 =én>1)(a=0)' (a—q)
M (s o) M (e - e (1 6y )
I'(a—q+1) (1=~ (a=0)I'(a—q)
Analogously, it can be proved that

N 1 -1
|Fou (t) — Fou (1)] < NEE (5775—9—1)[(1 — 5775*9) (7-5* — 8 )+( _

1 n
(1—5)*%1ds— 5/ (n—s)*"""ds
0

DP Fyu (8) — DY By ()] < 0T =) N (Pt ) (1 - o)
2u (1) — 2UNT)| =
r@-p+1) (1=0nP=0=1)(B=0)I' (8 —p)

Since the function t®, t*~1, ¢8, t6—1 to—a ta—a=1 ¢f=p ¢B=p=1 are yniformly
continuous on J, therefore it follows from the above estimates that FW is an
equicontinuous set. Also, it is uniformly bounded as F'W C W. Thus, we conclude
that F' is a completely continuous operator. Hence, by Schauder’s fixed point
theorem, there exists a solution for the three-point boundary value problem (1). O

4. EXAMPLE

In this section, we consider an example to illustrate our results.
Consider the three-point boundary value problem:

Diu(t) = ar+ (t - ;)4 [0 + (D%v(t))m} . te(0,1),

Div(t) = bl+(t;)4[(u(t))‘”+(D5u(t)>02], te(0,1),
w(0) = 0, Df*ou(l)ziDﬁ]u@), 0 (0) =0, Df‘ovu):ipf‘w(

Where 0 < p; ,0; < 1(i =1, 2)and aq, by are constants different from 0. Obviously,
it follows by theorem 3 that there exists a solution of the coupled system (7)
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