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ADOMIAN’S DECOMPOSITION METHOD FOR GENERALIZED

FIFTH ORDER TIME-FRACTIONAL KORTEWEG-DE VRIES

EQUATIONS

A. KAMRAN, E. AZHAR, A.A. KHAN, S.T. MOHYUD-DIN

Abstract. Adomian’s Decomposition Method (ADM) is applied to tackle

generalized fifth order time- fractional Korteweg-de Vries (KdV) equations.
The proposed technique is fully compatible with the complexity of these prob-

lems and obtained results are highly encouraging. Numerical results coupled

with graphical representations explicitly reveal the complete reliability and
efficiency of the suggested algorithm.

1. Introduction

Nonlinear partial differential equations [1]- [25] are of extreme importance in
applied and engineering sciences. The through study of literature reveals that most
of the physical phenomena are nonlinear in nature and hence there is a dire need to
find their appropriate solutions, see [1]- [25] and the references therein. Recently,
scientists have observed that number of real time problems are modeled by frac-
tional nonlinear differential equations [1],[6]-[9], [11]-[14], [16]-[18], [21]-[25] which
are very hard to tackle. In the similar context, we apply Adomian’s Decomposition
Method (ADM) [10],[12],[20] and [22] to solve generalized fifth order time- frac-
tional Korteweg-de Vries partial differential equations [17].

Dα
t u+ au2ux + buxuxx + cuuxxx + duxxxxx = 0, (1)

(where 0 ≤ α ≤ 1 ).The fractional derivatives are considered in the Caputo sense.
It is to be highlighted that such equations arise frequently in applied, physical
and engineering sciences. The basic motivation of this paper is the extension
of a very reliable and efficient technique which is called Adomian’s Decomposi-
tion Method (ADM) to find approximate solutions of generalized fifth order time-
fractional Korteweg-de-Vries partial differential equations. It is observed that the
proposed algorithms is fully synchronized with the complexity of fractional differen-
tial equations,. Numerical results coupled with graphical representations explicitly
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reveal the complete reliability and efficiency of the proposed algorithm.

2. Definitions

Definition 2.1 [1]
A real function f(x) , x > 0 , is said to be in the space Cµ, µ ∈ R if there exists
a real numberp(> µ), such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞) , and it is
said to be in the space C∞µ iff fm ∈ Cµ, µ ≥ 1,m ∈ N .
Definition 2.2 [1]
The Riemann-Liouville fractional integral operator of order α ≥ 0 , of a function
fCµ, µ− 1, is defined as
Jαf(x) = 1

Γ(α)

∫ x
0

(x− t)α−1f(t) dt. α > 0, x > 0,

J0f(x) = f(x). Properties of the operator J can be found in [1, 6−8, 12, 13, 16, 19, 20],
we mention only the following . For f ∈ Cµ, µ ≥ −1, α , β ≥ 0 and γ > −1 :
1. JαJβf(t) = Jα+βf(t) ,
2. JαJβf(t) = JβJαf(t) ,

3. Jαxγ = Γ(γ+1)
Γ(α+γ+1)x

α+γ .

Definition 2.3 [1]
The fractional derivative of f(x) in the Caputo sense is defined as
Dαf(x) = Jm−αDαf(x) = 1

Γ(m−α)

∫ x
0

(x− t)m−α−1fm(t) dt.,

for m− 1 < α ≤ m,m ∈ Z, x > 0, f ∈ Cm−1.
also, we need here two of its basic properties
Lemma 2.1
if m− 1 < α ≤ m,m ∈ N and f ∈ Cmµ , µ ≥ −1 ,
DαJαf(x) = f(x) ,

JαDαf(x) = f(x)−
∑m−1
k=0

fk(0+)xk

k! , x > 0.

3. Analysis of Adoinian’s Decomposition Method

The nonlinear differential equations (1) can be expressed in the operator form
as

Dα
t u+R(u) +N(u) = 0, n− 1 < α ≤ n, (2)

subject to the initial conditions
u(x, 0) = f(x),
where Dα

t is the time-fractional differential operator, N(u) is the nonlinear operator
and R(u) is some linear operator. Rearranging Eq. (2) and applying the operator
Jα , inverse of the operator Dα , to both sides of Eq. (2) yields

u(x, t) = f(x)− Jα[R(u) +N(u)], (3)

we suppose the solution to Eq.(2) in the form of the decmposition series of the form

u(x, t) =

∞∑
n=0

un(x, t), (4)
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and the nonlinear term N(u) is decomposed as

N(u) =

∞∑
n=0

An, (5)

where
∑∞
n=0An are the so-called Adomians polynomials. Substituting the decom-

position series Eq. (4) and Eq. (5) into the both sides of Eq. (3) gives

∞∑
n=0

un(x, t) = f(x)− Jα[R(u) +

∞∑
i=n−1

An], (6)

From Eq.(6), the iterates are determined by the following recursive way

u0(x, t) = f(x),

... (7)

uk+1(x, t) = Jα[R(uk)−Ak] k ≥ 0.

The Adomians polynomial can be calculated for all the types of nonlinearities as
described in [10, 12, 20, 22] and are given by

A0 = F (u0),

A1 = u1F
′(u0),

A2 = u2F
′(u0) +

u2
1

2!
F ′′(u0),

A3 = u3F
′(u0) + u1u2F

′′(u0) +
u3

1

3!
F ′′′(u0),

....

where N(u) = F (u) is the nonlinear function in Eq. (6). Finally, we approx-

imate the solution u(x,t) by the series φN (t) =
∑N−1
n=0 un(x, t), and u(x, t) =

limN→∞ φN (t).

4. Solution Procedure

In this section, we apply Adomian’s Decomposition Method (ADM) to solve
time- fractional Korteweg-de Vries equations. Numerical results are very encour-
aging.
Case.1 For a = 30, b = 30, c = 10 and d = 1, the equation is known as Lax’s fifth
order KdV Equation. Consider the Lax’s Equation.

Dα
t u+ 30u2ux + 30uxuxx + 10uuxxx + uxxxxx = 0, (8)

with initial conditions

u(x, 0) = 2k2(2− 3 tanh2(kx)).

Applying the recurrence relation defined in Eq. (7), we get

u0(x, t) = 2k2(2− 3 tanh2(kx)),

u1(x, t) =
k796 sinh(kx)(7 cosh4(kx) + 30 cosh2(kx)− 45)

cosh7(kx)

tα

Γ(α+ 1)
,
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u2(x, t) =
−1

cosh13(kx)
(768 k12(−238 cosh11(kx)−4443 cosh9(kx)+70800 cosh7(kx)

−299520 ksinh(kx) cosh4(kx)+661500 ksinh(kx)cosh2(kx)−396900 k sin(kx)−291600 kcosh4(kx)+

25920 ksinh(kx) cosh6(kx)+1680 k sinh(kx) cosh8(kx)+445500 cosh3(kx)−222750 cosh(kx))
t2α

Γ(2α+ 1)

The solution in the series form is given by

u(x, t) = 2k2(2− 3 tanh2(kx)) +
k796 sinh(kx)(7 cosh4(kx) + 30 cosh2(kx)− 45)

cosh7(kx)

tα

Γ(α+ 1)

+
−1

cosh13(kx)
(768 k12(−238 cosh11(kx)− 4443 cosh9(kx) + 70800 cosh7(kx)

− 299520 ksinh(kx) cosh4(kx) + 661500 ksinh(kx)cosh2(kx)

− 396900 k sin(kx)− 291600 kcosh4(kx) + cosh6(kx) + 1680 k sinh(kx) cosh8(kx)

+ 445500 cosh3(kx)− 222750 cosh(kx))
t2α

Γ(2α+ 1)
+ . . . .

(9)

For the special case α = 1, we obtain from Eq.(9):

u(x, t) = 2k2(2− 3 tanh2(kx)) +
k796 sinh(kx)(7 cosh4(kx) + 30 cosh2(kx)− 45)

cosh7(kx)

t

1!

+
−1

cosh13(kx)
(768 k12(−238 cosh11(kx)− 4443 cosh9(kx) + 70800 cosh7(kx)

− 299520 ksinh(kx) cosh4(kx) + 661500 ksinh(kx)cosh2(kx)

− 396900 k sin(kx)− 291600 kcosh4(kx) + cosh6(kx) + 1680 k sinh(kx) cosh8(kx)

+ 7445500 cosh3(kx)− 222750 cosh(kx))
t2

2!
+ . . . .

(10)

The exact solution of the fifth order Laxs Equation [17] is given by

u(x, t) = 2k2(2− 3tanh2(kx− 56k4t)). (11)

The results for the first four iteration of the Adomians Decomposition Method for
the Laxs Equation Eq.(8) for α = 0.50 and 1 and the exact solution Eq. (11) and
the graph for |uexact−uapprox| ,where uapprox is the approximate solution obtained
from the first four components of Adomians Decomposition Method for α = 1 are
shown in Figure 1.
Table.1 shows the numerical results for the first four terms of the Adomians De-
composition method for the Eq. (8) for α = 0.50 and α = 1 in comparison with
exact solution Eq. (11), also Error is calculated as |uexact − uapprox|,where uapprox
is the approximate solution obtained for the first four components of Adomians
Decomposition Method for α = 1. The result shows the accuracy of ADM up to
four decimal places by considering the first four terms of the approximate solution
Eq. (10). Higher accuracy can be achieved by considering more terms of the series
solution.

Figure 3 gives a comparison of the approximate solution Eq. (10) for different
values of α.
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Figure 1. The surface shows solution u(x, t) for k = 0.01 the
Eq. (8) when (a) α = 0.5, (b)α = 1, (c) Exact solution Eq. (11),
(d)|uexact − uapprox|.
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Figure 2. The surface shows solution u(x, t) for k = 0.01 the Eq.
(12) when (a) α = 0.5, (b)α = 1, (c) Exact solution Eq. (14),
(d)|uexact − uapprox|.
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Figure 3.

Figure 4.

Case.2For a = 45, b = 15, c = 15 and d = 1, the equation is known as Sawada-
Kotera fifth order KdV Equation. Consider the Sawada-Kotera Equation.

Dα
t u+ 45u2ux + 15uxuxx + 15uuxxx + uxxxxx = 0, (12)
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with initial conditions

u(x, 0) = 2k2(sech2(kx)),

applying the recurrence relation defined in Eq. (7), we get

u0(x, t) = 2k2(sech2(kx)),

u1(x, t) =
k784sinh(kx)

cosh3(kx)

tα

Γ(α+ 1)
,

u2(x, t) =
1

cosh9(kx)
(512k12(−720kcosh2(kx) sinh(kx)− 345 cosh3(kx) + 66 cosh5(kx)+

+ 315 cosh(kx) + 120 k sinh(kx)cosh4(kx)− 4 cosh7(kx) + 720 k sinh(kx)
t2α

Γ(2α+ 1)
,

(13)

....

The solution in the series form is given by

u(x, t) = 2k2(sech2(kx)) +
k784sinh(kx)

cosh3(kx)

tα

Γ(α+ 1)
+

1

cosh9(kx)
(512k12(−720kcosh2(kx) sinh(kx)−

− 345 cosh3(kx) + 66 cosh5(kx) + 315 cosh(kx) + 120 k sinh(kx)cosh4(kx)−

− 4 cosh7(kx) + 720 k sinh(kx)
t2α

Γ(2α+ 1)
. . . .

(14)

For the special case α = 1, we obtain the from Eq. (13)

u(x, t) = 2k2(sech2(kx))+
k784sinh(kx)

cosh3(kx)
t+

1

cosh9(kx)
(512k12(−720kcosh2(kx) sinh(kx)−345cosh3(kx)+

(15)

+ 66cosh5(kx)+

+ cosh(kx)315 + 120ksinh(kx) cosh4(kx)−
− 4cosh7(kx) + 720ksinh(kx))t2 + . . . .

The exact solution of the fifth order Sawada-Kotera Equation [17] is given by.

u(x, t) = 2k2(sech2(kx− 16k4t)). (16)

The results for the first four iteration of the Adomians Decomposition Method for
the fifth order Sawada-Kotera Equation Eq.(12) for α = 0.50 and 1 and the exact
solution Eq.(14) and the graph for |uexact − uapprox| ,where uapprox is the approxi-
mate solution obtained from the first four components of Adomians Decomposition
Method for α = 1 are shown in Figure 2.
Table.1 shows the numerical results for the first four terms of the Adomians Decom-
position method for Eq.(12) for α = 0.50 and 1 in comparison with exact solution
Eq. (14), also Error is calculated as |uexact − uapprox|,where uapprox is the approx-
imate solution obtained for the first four components of Adomians Decomposition
Method for α = 1. The result shows the accuracy of ADM up to four decimal places
by considering the first four terms of the approximate solution Eq. (13). Higher
accuracy can be achieved by considering more terms of the series solution.The Fig-
ure.4 gives a comparison of the approximate solution Eq. (13) for different values
of α.
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Table 1.

t x α = 0.5 α = 1 uexact |uexact − uapprox|

0.25 0.1595184136 0.1593408527 0.1594086287 0.6777600e-4

0.50 0.1574539363 0.1574653814 0.1576310431 0.1656617e-3

0.2 0.75 0.1542667411 0.1544596321 0.1547023186 0.2426865e-3

1.00 0.1500522786 0.1503907619 0.1506794308 0.2886689e-3

0.25 0.1597779345 0.1593527078 0.1594162102 0.6350240e-4

0.50 0.1575575066 0.1573731206 0.1576461292 0.2730086e-3

0.4 0.75 0.1542073937 0.1542774632 0.1547246131 0.4471499e-3

1.00 0.1498491048 0.1501464154 0.1507085040 0.5620886e-3

0.25 0.1600608355 0.1594365640 0.1594237429 0.1282110e-4

0.50 0.1577047654 0.1573391275 0.1576611681 0.3220406e-3

0.6 0.75 0.1542062702 0.1541334726 0.1547468627 0.6133901e-3

1.00 0.1497108958 0.1499172761 0.1507375355 0.8202594e-3

Table 2.

t x α = 0.5 α = 1 uexact |uexact − uapprox|

0.25 0.7982009936e-1 0.7980841449e-1 0.7983907898e-1 0.30664490e-4

0.50 0.7924528293e-1 0.7922138993e-1 0.7928412302e-1 0.62733090e-4

0.2 0.75 0.7828606788e-1 0.7825043558e-1 0.7834400446e-1 0.93568880e-4

1.00 0.7696113036e-1 0.7691444541e-1 0.7703704455e-1 0.12259914e-3

0.25 0.7982779512e-1 0.7981632957e-1 0.7987366456e-1 0.57334990e-4

0.50 0.7926136112e-1 0.7923731462e-1 0.7935889768e-1 0.12158306e-3

0.4 0.75 0.7831021367e-1 0.7827405717e-1 0.7845749683e-1 0.18343966e-3

1.00 0.7699287915e-1 0.7694530852e-1 0.7718706034e-1 0.24175182e-3

0.25 0.7983350342e-1 0.7982407766e-1 0.7990408237e-1 0.80004710e-4

0.50 0.7927350409e-1 0.7925307647e-1 0.7942961173e-1 0.17653526e-3

0.6 0.75 0.7832855415e-1 0.7829752336e-1 0.7856711378e-1 0.26959042e-3

1.00 0.7701706486e-1 0.7697602669e-1 0.7733345622e-1 0.35742953e-3
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5. Conclusion

Adomian’s Decomposition Method (ADM) has been implemented to find appro-
priate solutions of generalized fifth order time-fractional Korteweg-de Vries equa-
tions. Numerical results coupled with graphical representations explicitly reveal
the complete reliability and accuracy of the proposed algorithm.
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