FRACTIONAL CALCULUS OPERATORS INVOLVING GENERALIZED M-SERIES

DHARMENDRA KUMAR SINGH

Abstract

The principal aims of this paper is the study of fractional calculus operators due to Saxena and Kumbhat 7] and generalized M-series [6].

1. Introduction

\mathbf{H}-function. The H function [3] and [1] in terms of Mellin-Barnes type contour integral, is defined by

$$
\begin{align*}
H_{p, q}^{m, n}[z] & =H\left[\begin{array}{c}
\left(a_{p}, A_{p}\right) \\
\left(b_{q}, B_{q}\right)
\end{array}\right) z \\
& \left.=H_{p, q}^{m, n}\left[\begin{array}{c}
\left(a_{1}, A_{1}\right), \ldots,\left(a_{p}, A_{p}\right) \\
\left(b_{1}, B_{1}\right), \ldots,\left(b_{q}, B_{q}\right)
\end{array}\right)\right] \\
& =\frac{1}{2 \pi i} \int_{L} \chi(s) z^{s} d s \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\chi(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}+A_{j} s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}+B_{j} s\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}+A_{j} s\right)} \tag{2}
\end{equation*}
$$

$m, n, p, q \in \mathbb{N}_{0}$ with $0 \leq n \leq p, 1 \leq m \leq q, A_{i}, B_{j} \in \mathbb{R}_{+}, a_{i}, b_{j} \in \mathbb{R}$ or \mathbb{C} $(i=1,2, \ldots, p ; j=1,2, \ldots, q)$ such that

$$
A_{j}\left(b_{j}+k\right) \neq B_{j}\left(a_{i}-l-1\right)\left(k, l \in \mathbb{N}_{0} ; i=1,2, \ldots, n ; j=1, \ldots, m\right)
$$

where we use the usual notation: $\mathbb{N}_{0}=0,1,2, \ldots, \mathbb{R}=(-\infty, \infty), \mathbb{R}_{+}=(0, \infty)$ and \mathbb{C} being the complex number field. $L=L_{i \tau \infty}$ is a contour starting at the point $\tau-i \infty$, terminating at the point $\tau+i \infty$ with $\tau \in \mathbb{R}=(-\infty, \infty)$. Here z may be real or complex but is not equal to zero and an empty product is interpreted as unity. The H-function make sense, if

$$
\Omega=\sum_{j=1}^{n} A_{j}-\sum_{j=n+1}^{p} A_{j}+\sum_{j=1}^{m} B_{j}>0,|\arg z|<\frac{1}{2} \pi \Omega, z \neq 0
$$

[^0]$$
\Omega=0, \triangle \tau+\Re(\mu)<-1, \arg z=0, z \neq 0
$$
, where
$$
\triangle=\sum_{j=1}^{q} B_{j}-\sum_{j=1}^{p} A_{j} ; \mu=\sum_{j=1}^{q} b_{j}+\sum_{j=1}^{p} a_{j}+\frac{p-q}{2} .
$$

Saxena and Kumbhat Operators. Fractional integral operators involving Fox's H-function where defined and studied by Saxena and Kumbhat [7] in the following form

$$
R_{x, r}^{\eta, \alpha}[f(x)]=r x^{-\eta-r \alpha-1} \int_{0}^{x} t^{\eta}\left(x^{r}-t^{r}\right)^{\alpha} H_{p, q}^{m, n}\left[k U \left\lvert\, \begin{array}{c}
\left(a_{p}, A_{p}\right) \tag{3}\\
\left(b_{q}, B_{q}\right)
\end{array}\right.\right] f(t) d t
$$

and

$$
K_{x, r}^{\delta, \alpha}[f(x)]=r x^{\delta} \int_{x}^{\infty} t^{-\delta-r \alpha-1}\left(t^{r}-x^{r}\right)^{\alpha} H_{p, q}^{m, n}\left[k V \left\lvert\, \begin{array}{c}
\left(a_{p}, A_{p}\right) \tag{4}\\
\left(b_{q}, B_{q}\right)
\end{array}\right.\right] f(t) d t
$$

where U and V represent the expressions

$$
\left(\frac{t^{r}}{x^{r}}\right)^{m}\left(1-\frac{t^{r}}{x^{r}}\right)^{n} \text { and }\left(\frac{x^{r}}{t^{r}}\right)^{m}\left(1-\frac{x^{r}}{t^{r}}\right)^{n}
$$

respectively and $\mathrm{r}, \mathrm{m}, \mathrm{n}$ are positive integers. The condition of the validity of the operators (3) and (4) are given below:
(i) $1 \leq p, q<\infty ; p^{-1}+q^{-1}=1$;
(ii) $\Re\left[\eta+\left(r m \frac{b_{j}}{\beta_{j}}\right)\right]>-q^{-1}$;
$\Re\left[\alpha+\left(r n \frac{b_{j}}{\beta_{j}}\right)\right]>-q^{-1}$;
$\Re\left[\alpha+\delta+\left(r m \frac{b_{j}}{\beta_{j}}\right)\right]>p^{-1}(j=1, \ldots, m)$
(iii) $f(x) \in L_{p}(0, \infty)$,
where $\left[L_{p_{j}}(0 ; 1)\right]$ denotes the space of Lebesgue integrable functions of n variables exactly with p_{j}-th power integrable with respect to each of the variables x_{j}. This is the space with mixed norm and was considered in [8].
Generalized M-series. The generalized M-series function is introduced by Sharma and Renu [6],

$$
\begin{gather*}
\stackrel{\alpha, \beta}{{ }_{p}^{M}}(z) \\
 \tag{5}\\
=\sum_{r=0} \frac{{ }_{p}, \beta}{M_{q}}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right) \\
\\
\left.=a_{1}\right) \ldots\left(a_{p}\right) \ldots\left(b_{q}\right) \\
\Gamma(\alpha r+\beta)
\end{gather*}
$$

Here, $(a)_{r}:=\frac{\Gamma(a+r)}{\Gamma(a)}, \alpha, \beta \in C, \Re(\alpha)>0$. From the ratio test it is evident that the series in (5) is convergent for all z if $q \geq p$, it is convergent for $|z|<1$ if $p=q+1$ and divergent if $p>q+1$. When $p=q+1$ and $|z|=1$ the series can converge in some case. Let

$$
\beta=\sum_{j=1}^{p} a_{j}-\sum_{j=1}^{q} b_{j} .
$$

It can be shown that when $p=q+1$ the series is absolutely convergent for $|z|=1$ if $\Re(\beta)<0$, conditionally convergent for $z=-1$ if $0 \leq \Re(\beta) \leq 1$ and divergent for $|z|=1$ if $1 \leq \Re(\beta)$.

2. Theorems

Theorem 1 If $\alpha, \beta \in C, \Re(\alpha)>0 f(x) \in L_{p}(0, \infty), 1 \leq p \leq 2$ or $[f(x) \in$ $M_{p}(0, \infty)$ and $\left.p>2\right],|\arg (k)|<\frac{1}{2} \pi \Omega, \Omega>0, \Re\left[\eta+\left(r m \frac{b_{j}}{\beta_{j}}\right)\right]>-q^{-1}, \Re\left[\alpha+\left(r n \frac{b_{j}}{\beta_{j}}\right)\right]>$ $-q^{-1}, \Re\left[\alpha+\delta+\left(r m \frac{b_{j}}{\beta_{j}}\right)\right]>p^{-1}(j=1, \ldots, m)$ and $p^{-1}+q^{-1}=1$, then

$$
\begin{gather*}
R_{x, r}^{\eta, \alpha}\left[{ }_{l}^{\alpha, \beta} \stackrel{M}{M}_{m}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; x\right)\right] \\
={ }_{l} \stackrel{\alpha, \beta}{M_{m}(x) H_{P+2, Q+1}^{M, N+2}}\left[\left.k\right|_{\left(b_{Q}, B_{Q}\right),\left(-\alpha-\frac{\eta}{r}-\frac{k}{r}-\frac{1}{r}, m+n\right)} ^{\left(a_{P}, A_{P}\right),(-\alpha, n),\left(1-\left(\frac{\eta}{r}+\frac{k}{r}+\frac{1}{2}\right), m\right)}\right], \tag{6}
\end{gather*}
$$

where $l \leq m+1$.
Proof. With equation (1), (3) and (5), we have

$$
\begin{gather*}
R_{x, r}^{\eta, \alpha}\left[\begin{array}{l}
\alpha, \beta \\
M
\end{array}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; x\right)\right] \\
=r x^{-\eta-r \alpha-1} \int_{0}^{x} t^{\eta}\left(x^{r}-t^{r}\right)^{\alpha} \frac{1}{2 \pi i} \int_{L} \chi(s)(k U)^{s} d s \\
\times{ }_{l} \stackrel{M}{M}_{m}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; t\right) d t . \tag{7}
\end{gather*}
$$

Changing the order of the integration valid under the condition given with the theorem, we obtain

$$
\begin{align*}
& =r x^{-\eta-r \alpha-1} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}, \ldots,\left(a_{l}\right)_{k}}{\left(b_{1}\right)_{k}, \ldots,\left(b_{m}\right)_{k}} \frac{1}{\Gamma(\alpha k+\beta)} \frac{1}{2 \pi i} \int_{L} \chi(s) k^{s} \\
& \quad \times x^{r \alpha-r m s}\left\{\int_{0}^{x}\left(1-\frac{t^{r}}{x^{r}}\right)^{\alpha+n s} t^{\eta+k+r m s} d t\right\} d s \tag{8}
\end{align*}
$$

Put $\frac{t^{r}}{x^{r}}=u$ then $t=x u^{\frac{1}{r}}$ in (8) and using beta function formula defined as

$$
\begin{equation*}
B(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}=\int_{0}^{1}(1-x)^{m-1} x^{n-1} d x \tag{9}
\end{equation*}
$$

where m and n are positive i.e., $m>0, n>0$. We arrive at the desired result

$$
\begin{gather*}
=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}, \ldots,\left(a_{l}\right)_{k}}{\left(b_{1}\right)_{k}, \ldots,\left(b_{m}\right)_{k}} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \\
\times \frac{1}{2 \pi i} \int_{L} \chi(s) \frac{\Gamma(1+\alpha+n s) \Gamma\left((\eta+k+1) \frac{1}{r}+m s\right)}{\Gamma\left(1+\alpha+n s+(\eta+k+1) \frac{1}{r}+m s\right)} k^{s} d s \tag{10}
\end{gather*}
$$

Theorem 2 If $\alpha, \beta \in C, \Re(\alpha)>0 f(x) \in L_{p}(0, \infty), 1 \leq p \leq 2$ or $\left[f(x) \in M_{p}(0, \infty)\right.$ and $p>2],|\arg (k)|<\frac{1}{2} \pi \Omega, \Omega>0, \Re\left[\eta+\left(r m \frac{b_{j}}{\beta_{j}}\right)\right]>-q^{-1}, \Re\left[\alpha+\left(r n \frac{b_{j}}{\beta_{j}}\right)\right]>$ $-q^{-1}, \Re\left[\alpha+\delta+\left(r m \frac{b_{j}}{\beta_{j}}\right)\right]>p^{-1}(j=1, \ldots, m)$ and $p^{-1}+q^{-1}=1$, then

$$
\begin{gather*}
k_{x, r}^{\delta, \alpha}\left[{ }_{l} \stackrel{\alpha, \beta}{M}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; x\right)\right] \\
={ }_{l}^{\alpha, \beta} \stackrel{M_{n}}{M}(x) H_{P+2, Q+1}^{M, N+2}\left[\left.k\right|_{\left(b_{Q}, B_{Q}\right),(k / r-\delta / r-\alpha, m+n)} ^{\left.\left(a_{P}, A_{P}\right),(1-\delta / r+k / r, m),(-\alpha, n)\right)}\right], \tag{11}
\end{gather*}
$$

where $l \leq m+1$.
Proof. Using (1), (4) and (5), we get

$$
\begin{gather*}
K_{x, r}^{\delta, \alpha}\left[{ }_{l} \stackrel{\alpha, \beta}{M}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; x\right)\right]=r x^{\delta} \int_{x}^{\infty} t^{-\delta-r \alpha-1}\left(t^{r}-x^{r}\right)^{\alpha} \frac{1}{2 \pi i} \int_{L} \chi(s)(k V)^{s} d s \\
\times_{l} \stackrel{\alpha, \beta}{M_{m}}\left(a_{1}, \ldots, a_{l} ; b_{1}, \ldots, b_{m} ; t\right) d t \tag{12}
\end{gather*}
$$

Changing the order of integration of 12 which is valid under the above stated conditions, we have the left side of (12) as

$$
\begin{align*}
& =r x^{\delta} \sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{l}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{q}\right)_{k}} \frac{1}{\Gamma(\alpha k+1)} \frac{1}{2 \pi i} \int_{L} \chi(s) k^{s} \\
& \times x^{r m s}\left\{\int_{x}^{\infty}\left(1-\frac{x^{r}}{t^{r}}\right)^{\alpha+n s} t^{-\delta-r m s+k-1} d t\right\} d s \tag{13}
\end{align*}
$$

Put $\frac{x^{r}}{t^{r}}=u$ then $t=\frac{x}{u^{\frac{1}{r}}}$ in above expression and using (9), we get

$$
\begin{gather*}
=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \ldots\left(a_{l}\right)_{k}}{\left(b_{1}\right)_{k} \ldots\left(b_{m}\right)_{k}} \frac{x^{k}}{\Gamma(\alpha k+1)} \\
\times \frac{1}{2 \pi i} \int_{L} \chi(s) \frac{\Gamma(1+\alpha+n s) \Gamma(\delta / r-k / r+m s)}{\Gamma(\delta / r-k / r+\alpha+1+(n+m) s)} k^{s} d s \tag{14}
\end{gather*}
$$

Which is the required result.

3. Special Cases

1. Putting $\mathrm{l}=\mathrm{m}=1, \mathrm{a}=\rho \in C$ and $\mathrm{b}=1$, in(6) and (11), we get

$$
\begin{aligned}
& R_{x, r}^{\eta, \alpha}\left[\begin{array}{c}
\alpha, \beta \\
M_{1}(\rho ; 1 ; z)
\end{array}\right] \\
& =\sum_{r=0}^{\infty} \frac{(\rho)_{r}}{(1)_{r}} \frac{z^{r}}{\Gamma(\alpha+\beta)} H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{cc}
\left.k \left\lvert\, \begin{array}{c}
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-(\eta / r+k / r+1 / r), m) \\
\left(b_{Q}, B_{Q}\right),(-\alpha-\eta / r-k / r-1 / r, m+n)
\end{array}\right.\right]
\end{array} .\right.
\end{aligned}
$$

$$
\begin{equation*}
K_{x, r}^{\delta, \alpha}\left[\stackrel{\alpha, \beta}{M_{1}(\rho ; 1 ; z)}\right] \tag{15}
\end{equation*}
$$

where $p \leq q+1$ and the ${ }_{1} \stackrel{\alpha, \beta}{M}(\rho ; 1 ; x)$ on the right is known as generalized MittagLeffer function, introduced by Prabhakar [9] and Studied by Kilbas et al ([2] p.45).
2. For $\mathrm{l}=\mathrm{m}=0$ in $(\sqrt{6})$ and (11), we obtain the following interesting result for MittagLeffer function (see [2, [5)defined by

$$
\begin{align*}
& R_{x, r}^{\eta, \alpha}\left[\begin{array}{c}
\alpha, \beta \\
{ }_{0} M_{0}(-;-; z)
\end{array}\right] \\
& \quad=\sum_{r=0}^{\infty} \frac{z^{r}}{\Gamma(\alpha r+\beta)} H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{c}
\left.k \left\lvert\, \begin{array}{c}
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-(\eta / r+k / r+1 / r, m) \\
\left(b_{Q}, B_{Q}\right),(-\alpha-\eta / r-k / r-1 / r, m+n)
\end{array}\right.\right] .
\end{array} .\right. \tag{17}
\end{align*}
$$

$$
\begin{align*}
& K_{x, r}^{\delta, \alpha}\left[\begin{array}{c}
\alpha, \beta \\
{ }_{0} M_{0}(-;-; x)
\end{array}\right] \\
& \quad=\sum_{r=0}^{\infty} \frac{z^{r}}{\Gamma(\alpha r+\beta)} H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{c}
\left.k \left\lvert\, \begin{array}{c}
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-\delta / r+k / r, m) \\
\left(b_{Q}, B_{Q}\right),(k / r-\delta / r-\alpha, m+n)
\end{array}\right.\right]
\end{array} .\right. \tag{18}
\end{align*}
$$

where $p \leq q+1$.
3. If we set $\alpha=1, \beta=1$ in (6) and 11 , we get

$$
\begin{align*}
& R_{x, r}^{\eta, \alpha}\left[{ }_{l} \stackrel{1,1}{M}_{m}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)\right] \\
& ={ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right) H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{cc}
k & \left(a_{P}, A_{P}\right),(-\alpha, n),(1-(\eta / r+k / r+1 / r), m) \\
\left(b_{Q}, B_{Q}\right),(-\alpha-\eta / r-k / r-1 / r, m+n)
\end{array}\right] . \\
& K_{x, r}^{\delta, \alpha}\left[{ }_{l} \stackrel{1}{M}_{m}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)\right] \tag{19}\\
& ={ }_{p} F_{q}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right) H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{cc}
k \mid & \left(a_{P}, A_{P}\right),(-\alpha, n),(1-\delta / r+k / r, m) \\
\left(b_{Q}, B_{Q}\right),(k / r-\delta / r-\alpha, m+n) .
\end{array}\right], \tag{20}
\end{align*}
$$

where $p F_{q}$ is generalized hypergeometric function and $p \leq q+1$.
4. In equation (6) and (11) generalized M-series can be represented as a special case of the Wright generalized hypergeometric function $p_{q} \Psi_{q}(z)$ (for its definition see e. g. [2], p. 56 (1. 11. 14) also [4] and [10])

$$
\begin{align*}
& R_{x, r}^{\eta, \alpha}\left[{ }_{l}^{\alpha, \beta}{ }_{M}^{M}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)\right] \\
& ={ }_{p+1} \Psi_{q+1}\left[z \left\lvert\, \begin{array}{l}
\left(a_{1}, 1\right), \ldots,\left(a_{p}, 1\right),(1,1) \\
\left(b_{1}, 1\right), \ldots,\left(b_{q}, 1\right),(\alpha, \beta)
\end{array}\right.\right] \\
& \times H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{c}
\\
k \mid \\
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-(\eta / r+k / r+1 / r), m) \\
\left(b_{Q}, B_{Q}\right),(-\alpha-\eta / r-k / r-1 / r, m+n)
\end{array}\right] . \tag{21}\\
& K_{x, r}^{\delta, \alpha}\left[\stackrel{\alpha, \beta}{M_{m}}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)\right] \\
& ={ }_{p+1} \Psi_{q+1}\left[z \left\lvert\, \begin{array}{l}
\left(a_{1}, 1\right), \ldots,\left(a_{p}, 1\right),(1,1) \\
\left(b_{1}, 1\right), \ldots,\left(b_{q}, 1\right),(\alpha, \beta)
\end{array}\right.\right] \\
& \times H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{c}
k \mid \\
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-\delta / r+k / r, m) \\
\left(b_{Q}, B_{Q}\right),(k / r-\delta / r-\alpha, m+n) .
\end{array}\right] . \tag{22}
\end{align*}
$$

or equations (6) and 11 can be written in the following form

$$
\begin{align*}
& R_{x, r}^{\eta, \alpha}\left[\begin{array}{c}
{ }_{l} M_{m}^{M}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; x\right)
\end{array}\right] \\
& =\kappa H_{P+1, Q+2}^{1, P+1}\left[\begin{array}{c}
-x \mid \\
(0,1),\left(1-\beta_{j}, 1\right)_{1}^{q}(1-\beta, \alpha)
\end{array}\right] \\
& \quad \times H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{c}
\left(1-\alpha_{j}, 1,1\right)_{1}^{p},(0,1) \\
\left.k \left\lvert\, \begin{array}{c}
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-(\eta / r+k / r+1 / r), m) \\
\left(b_{Q}, B_{Q}\right),(-\alpha-\eta / r-k / r-1 / r, m+n)
\end{array}\right.\right]
\end{array} .\right. \tag{23}
\end{align*}
$$

$$
\left.\begin{array}{l}
K_{x, r}^{\delta, \alpha}\left[\begin{array}{c}
\alpha, \beta \\
l
\end{array} M_{m}\left(a_{1}, \ldots, a_{p} ; b_{1}, \ldots, b_{q} ; z\right)\right.
\end{array}\right] \quad \begin{array}{cc}
\\
=\kappa H_{P+1, Q+2}^{1, P+1}\left[\begin{array}{cc}
-x \mid & \left(1-\alpha_{j}, 1,1\right)_{1}^{p},(0,1) \\
(0,1),\left(1-\beta_{j}, 1\right)_{1}^{q}(1-\beta, \alpha)
\end{array}\right] \\
\times H_{P+2, Q+1}^{M, N+2}\left[\begin{array}{c}
k \mid \\
\left(a_{P}, A_{P}\right),(-\alpha, n),(1-\delta / r+k / r, m) \\
\left(b_{Q}, B_{Q}\right),(k / r-\delta / r-\alpha, m+n)
\end{array}\right] \tag{24}
\end{array}
$$

where $\kappa=\frac{\Pi_{j=1}^{q} \Gamma\left(b_{j}\right)}{\Pi_{j=1}^{p} \Gamma\left(a_{j}\right)}$ and $p \leq q+1$.

References

[1] A. M. Mathai, R. K. Saxena, The H-function with Applications in Statistics and other discipline, Halsred Press, Wiely Eastran Limited, New Delhi: Wiley, New York 1978.
[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Euations, Elsevier, North Holland Math. Studies 204. Amsterdam, 2006.
[3] C. Fox, The G and H-function as symmetrical Fourier Kernals, Trans. Aner. Math. Soc. 98, 395-429, 1961.
[4] E. M. Wright, J. London Math. Soc. 10, 287-293, 1935.
[5] I. Podlubny. Fractional Differential Equations, Acad. Press, San Diegon, New York etc 1999.
[6] M. Sharma and Renu Jain, A notes on generalized M-Series as a special function of fractional calculus, Fract. Calc. appl. Anal. 4, no. 12, 449-452, 2009.
[7] R. K. Saxena, R. K. Kumbhat, Integral operators involving H-function, Indian J. Pure and Applied Mathematics, 5, 1-6, 1974.
[8] S. Samko, A. Kilbas and O. I. Marichev, Integrals and derivatives of fractional order and some of their applications (in Russian), Nauka i Technika, Minsk, 1987.
[9] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19, 7-15, 1971.
[10] V. Kriyakova, Some Special functions related to fractional calculus and fractional(noninteger)order control system and equations. Facta Univ. (Sci. J. of Univ. Nsi.), Ser. Automatic Control and Robotics, 7, No. 1, 79-98, 2008..

Dharmendra Kumar Singh
Department of Mathematics
University Institute of Engineering and Technology
C. S. J. M. University, Kanpur
(UP)IndiA
E-mail address: drdksinghabp@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26A33, 33C60, 33E12.
 Key words and phrases. H-function, generalized M-series, Saxena and Kumbhat operators. Submitted Dec. 23, 2013. Revised March 5, 2014.

