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EXISTENCE OF UNIQUE POSITIVE SOLUTION TO A
TWO-POINT BOUNDARY-VALUE PROBLEM OF
FRACTIONAL-ORDER SWITCHED SYSTEM WITH
p-LAPLACIAN OPERATOR

XIANGSHAN KONG, DONGDONG WANG, HAITAO LI

ABSTRACT. This work investigates the existence and uniqueness of a positive
solution to a two-point boundary-value problem of fractional-order switched
system with p-Laplacian operator, and presents a number of new results. First,
the considered BVP is converted to an operator equation by using the property
of Caputo derivative. Second, based on the operator equation and a fixed point
theorem for a concave operator on a cone, a sufficient condition is presented
for the existence and uniqueness of a positive solution. Finally, an illustra-
tive example is given to support the obtained new results. The study of the
illustrative example shows that the obtained results are effective.

1. INTRODUCTION

Fractional differential equations can properly describe many phenomena in vari-
ous fields of science and engineering [1, 2, 3, 4] such as physics, technology, biology,
chemical process, and so on. Due to this, the study of existence of solutions to var-
ious boundary value problems (BVPs) of fractional-order differential equations has
attracted many scholars’ interest [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
As an important branch of fractional-order differential equations, fractional-order
p-Laplacian equations have been investigated in a series of recent works [20, 21,
22, 23, 24]. In [20], Chen and Liu considered the anti-periodic boundary value
problem of fractional differential equation with p-Laplacian operator, and obtained
the existence of one solution by using Schaefer’s fixed point theorem under cer-
tain nonlinear growth conditions. Han et al. [21] investigated a class of fractional
boundary-value problem with p-Laplacian operator and boundary parameter, and
presented several existence results for a positive solution in terms of the boundary
parameter.

While all the above results just considered a single-mode nonlinearity, fractional-
order differential equations in practice often have switched nonlinearity, which is
called switched systems. A switched system consists of a family of subsystems
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described by differential or difference equations and a switching law that orches-
trates switching between these subsystems. Switched systems arise as models for
phenomena which cannot be described as exclusively continuous or exclusively dis-
crete processes [25]. Due to their applications in traffic control, chemical processing,
switching power converters, etc., switched systems have been studied by many schol-
ars and lots of excellent results have been built up during the last three decades
[26, 27, 28, 29, 30]. It is noted that the first issue of studying switched systems is
whether or not the solution is unique. To the best of our knowledge, there is no
paper available to answer this question for fractional-order switched system with
p-Laplacian operator.

Motivated by the above, in the present paper, we study the following two-point
boundary-value problem of fractional-order switched system with p-Laplacian op-
erator:

{ DE, @y (Dg. (1)) = fow (b a(t),t € T = [0,1], Q)
2(0) = va(1), Di;x(0) = nDg, z(1),

where ®,,(s) = [s[P7%s, p> 1, & = @, 11;4—%: L0<o,f<1l,1<a+p<2,
0<~v,n<1l,o():[0,1] - M ={1,2,---,N} is a finite switching signal which is a
piecewise constant function depending on ¢, Rt = (0, +00), f; € C[Jx R*, Rt],i €
M and Dg, is the Caputo derivative. Corresponding to the switching signal o(t),
we have the following switching sequence:

{(i07 tO)a ) (’L]7 tj)7 R (Zka tk?)‘lj €M7 ]:Oa 17 T k}a (2)

which means that the i,;th nonlinearity is activated when ¢ € [t;, t;41) and the i;th
nonlinearity is activated when ¢ € [tg, 1]. Here, tg = 0. Our purpose is to obtain
sufficient conditions for the uniqueness of a positive solution to BVP (1). The main
tool used in this work is a fixed point theorem for a concave operator on a cone.
Throughout this paper, we consider BVP (1) in the real Banach space E = (0, 1]

with the norm ||z|| = m[aa)i] |z(t)|]. Let P={x € E:x(t) >0, Vte][0,1]}. Then,
te(o,

P is a normal solid cone of E with P° ={z € E: z(t) >0, V¢ € [0,1]}. A solution
x(t) € E is said to be a positive solution to BVP (1), if x € P and z(t) Z 0. We
study the existence of positive solutions to BVP (1) in P.

The main contributions of this paper are as follows. On one hand, we firstly
investigate the existence of positive solutions to fractional-order switched systems
with p-Laplacian operator, which enriches the theory of fractional-order differential
equations. On the other hand, we propose a general method to deal with the
switched nonlinearity, which can be used to study other kinds of BVPs of fractional-
order switched systems.

The rest of this paper is structured as follows. Section 2 provides some necessary
preliminaries which will be used to obtain the main results. Section 3 investigates
the existence and uniqueness of a positive solution to BVP (1), which is followed
by an illustrative example in Section 4.

2. PRELIMINARIES

We give some necessary preliminaries on the Caputo derivative, which will be
used in the sequel. For details, please refer to [2, 3, 4] and the references therein.
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Definition 1 The Riemann-Liouville fractional integral of order o« > 0 of a
function y : (0,400) — R is given by

) = g7 [ (=9 u(s)as 3)

provided the right side is pointwise defined on (0, +00).
Definition 2 The Caputo fractional derivative of order a > 0 of a continuous
function y : (0,400) — R is given by

o o1 A G
D0+y(t) - F(’IL 7 Ot) /0 (t o S)a,nJrl dS7 (4)

where n = [a] + 1, provided that the right side is pointwise defined on (0, +00).
One can easily obtain the following property from the definition of Caputo de-
rivative.
Proposition 1 Let o > 0. Assume that y, D§, y € L(0,1). Then the following
equality holds:

1§, D5 y(t) = y(t) + Co + Cit + -+ Cp ", (5)
for some C; € R, i =0,1,--- ,n— 1, where n = [a] + 1.

3. MAIN RESULTS

In this section, we first convert BVP (1) into an equivalent operator equation,
and then present some new results on the existence and uniqueness of positive
solutions to BVP (1).

Lemma 1 Given h € C|0, 1], the unique solution of

{ DY@, (Dgy() = hlt),t € [0,1),
2(0) = ya(1), Dg, #(0) = nDg, (1)

o(t) = IQ, (I&h(t) + Ah(t)) + Bh(t)

- ﬁ /Ot(t — 51, (F(lﬁ) /OS(S = )P h(r)dr + Ah(s) )ds + Bh(t),

where
AND) = A ()
_ fézzn) I‘(lﬁ)/o (1—5)°~h(s)ds, ¥t € [0,1],
and
Bh(t) = %I&%(I&h(ﬂ+Ah(t))|t=1

= i 09 (g e i v s

Proof. Assume that x(t) satisfies (6). Then, from Proposition 1 we have

o, (Dg+x(t)) = 1P, h(t) + co, o €R.
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From the boundary value condition Dg, 2(0) = nDg (1), one can see that

= &%I&h(t)h_l = Ah(t).

Thus, we have
2(t) = Ig+q>q(1§+h(t) n Ah(t)) Yo, ol €R,

which together with the boundary value condition x(0) = yz(1) yields that

o1 = %Iggq (Ioﬁh(t) + Ah(t)) le_1 = Bh(t).
-7
The proof is completed. 0
For any z(t) € C[0,1] and any switching sequence (2), define
Kz(t) = I§®, (I&x(t) + Ax(t)) + Bz(t)

= ﬁ /Ot(t - S)ail@q(ﬁ /05(8 — 1) a(r)dr

) 1 1 — ) (r)dr )ds
T, 0 )

ﬁﬁ/o (1—3)“_1<I>q(ﬁ /0( (S—T)’B_ll‘(7'>d7'

7@17(77) i 1 — )P (r)dr )ds
" 1—¢p(n)F</3)/o(1 yetnd )d’ @

and
fio(ta 33), te [Oa tl);

Fo(t, @) =4 fu(t, 2), L€t tjs); (®)

fi (t, ), t€E [t, 1].

Lemma 2 z(t) € E is a solution to BVP (1), if and only if (¢) = T'z(t), where
Txz(t) = K(Fo(t,z(t))).

In the following, we study the existence of a unique positive solution to BVP
(1). To this end, we need the following fixed point theorem [31].

Definition 3 Let P be a normal solid cone in a real Banach space E and P° be
the interior of P. Suppose that T : P° — P° is an operator, and 0 < 6 < 1. Then
T is called a -concave operator if

T(ku) > k°Tu, V0 <k < 1,u € P°.

Lemma 3 Assume that P is a normal solid cone in a real Banach space E,
0<60<1,and T : P° — P° is a f-concave increasing operator. Then T has a
unique fixed point in P°.

Now, we list some conditions on the nonlinearity of BVP (1).

(H1) For any i € M, f; : J x (0, +00) — (0, +00).

(H2) For any i € M, f;(t,z) is increasing in z for z € RT.

(H3) For any ¢ € M, there exists a 6; € [0, 1), such that

fi(t kx) > kP~ V% (¢t x), Ve (0,1), teJ, zeRT.
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Remark 1 Conditions (H1)-(H3) imply the following conditions of F7 (¢, z):

(H1") Fo(t,z) >0, Vte J, € (0, 400).

(H2') F7(t,z) is increasing in « for x € R*.

(H3') Fo(t kx) > kP=DOFo(t,2), V k € (0,1), t € J, = € RT, where § =
max6;.
ieM

Based on Lemma 3 and Remark 1, we have the following result.

Theorem 1 Suppose that (H1)-(H3) hold. Then for any finite switching signal
o(t): J — M, BVP (1) has a unique positive solution.

Proof. We first prove that T : P° — P°.

For any « € P°, we have z(t) > 0,t € [0,1]. Then (H1") implies

) = g [ - [0 Gatmar

I'(8)
oo ?I&E:zn)r(lﬁ) /O 1(1—T)B_1Fa(7,x(7))dT>ds
+ - 971 (5 [ = et
+ %%Al(l )P (7, (r))dr )ds > 0, ¥ £ € [0,1]

Hence, Tx € P°.

Next, we prove that T is increasing in P°.

For any x1,x» € P° with z; < x5, from the monotonicity of F° and 297!, we
have Txo(t) — Tx1(t) > 0, ¥ t € [0, 1], which implies that T is increasing in P°.

Finally, we prove that T is a #-concave operator.

In fact, from (H3'), for any 0 < k < 1, = € P°, it is easy to see that

Tha)t) = ﬁ /O <t—s)““1¢>q(ﬁ /O (s = 1) ka(r)dr
B 1

_|_

— 1 — YR (7, ka(7))dT ) ds
1—‘I’p(n)F(ﬂ)/o(1 ) F(’k())d)d

1 ! a—1 1 ° -1 o
+ /0(1—8) @q(i/o (s — 1)~ F (7, ka(7))dr

1-7T(a) L(3)
7(1);”(77) L 1 — )P YR (7, ka(7))dT ) ds
" 1—‘1)p(77)F(5)/o(1 JTE (n ke(n)d )d

> keﬁ /Ot(t — 5)0‘71@(1(% /05(8 — )P RO (7, 2(7))dr

B 1 1 — )P YE (7, 2(7))dr ) ds
i 1‘I>p(77)F(5)/()(1 o ())d)d

ot /(Jl(l—s)a_lq)q(l/OS(S—T)ﬂ_lFU(T,x(T))dT

1—~D(a) '(B)

7(1)10(77) L 1 — 7)Y EO (7, 2(7))dT ) ds
e T, T )
= K'T(x)(t),

which shows that T' is a f-concave operator.
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By Lemma 3, BVP (1) has a unique positive solution. O

4. AN ILLUSTRATIVE EXAMPLE

In this section, we give an illustrative example to support our new results.
Example 1 Consider the following BVP:

{ Df, @ (Dga()) = forw (. 2(t)), t € J, ©
#(0) = 52(1), D 2(0) = nDg (1),

where 0 < o, <1, 1 < a4+ <2,0<~,n <1 are arbitrary, o(t) : J = M =
{1, 2, 3} is a finite switching signal, and

filt, ) = (L+ )z, folt, ) = (2+)a3, f3(t, z) = (3+t%)zt.
It is easy to see that
filt, z) >0, Vte J ze (0, +o0), i =1, 2, 3.

Thus, (H1) holds.
A simple calculation shows that

ofi(t, x) . 1+4+¢

>0,Vted, ze (0, +o00),

or 2y
Ofa2(t, )  2(2+1t?)
p BN >0,VteJ ze (0, +00),

and

dfs(t, )  3(3+1t°)
or ayE >0,Vted, ze (0, +00).
Hence, (H2) is satisfied.
Now we check (H3). In fact,

fit, kz) = VE(+t)Vz > k2 fi(t, 2), Vke(0,1), te J, x € RT,

folt, ka) = k3 (24 t2)ad > k3 fot, 2), Vke (0,1), te J, z € RY,
and
f3(t, kz) = k1(3+ )2t > kifs(t, 1), Vke (0,1), te J, xR .

Therefore, (H3) holds.
Hence, Theorem 1 shows that for any finite switching signal o(¢) : J — M, BVP
(9) has a unique positive solution.
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