
Journal of Fractional Calculus and Applications,

Vol. 5(1) Jan. 2014, pp. 156 -164.

ISSN: 2090-5858.

http://fcag-egypt.com/Journals/JFCA/

————————————————————————————————

EXISTENCE OF SOLUTION FOR A THREE POINT BOUNDARY

VALUE PROBLEM OF FRACTIONAL DIFFERENTIAL

EQUATION

R. A. KHAN, H. KHAN

Abstract. In this paper, we study existence and uniqueness of solutions to
a class of three-point boundary value problems for nonlinear fractional order
differential equation of the form{

Dαu(t) + f(t, u(t), u′(t)) = 0, 1 < α ≤ 2,

u(0) = 0, Dpu(1) = δDpu(η), 0 < p < 1

where 0 < µ < p < 1, 0 < η ≤ 1 and Dα is Caputo’s fractional derivative

of order α. Our results are based on some classical results from fixed point
theory. We impose some growth and continuity conditions on the nonlinear f .
For the applications of our results we present an example.

1. Introduction

Due to the development and applications of fractional calculus in many fields
such as engineering, mathematics, physics, chemistry, etc (see [1]-[6]), have at-
tracted the attentions of many researchers in a variety of directions. The efforts
of mathematicians to develop theory for applied scientists played significant role in
this area of mathematics too. Different aspects of fractional differential equations
are studied and being developed but one of the most important area of research
in the field of fractional order differential equations is the theory of existence and
uniqueness of solutions of nonlinear fractional order differential equations. This
ares of research gained much interest in the community of mathematicians. In par-
ticular, for the study of boundary value problems for fractional order differential
equations, we refer the readers to ([7]-[23]) and the references therein.

Here we refer some boundary value problems which motivated us for the present
work. By the help of fixed-point theorem, in [25] Bai and Lu investigated the
existence and multiplicity of positive solutions for fractional differential equation{

Dq
0+u(t) + f(t, u(t))) = 0, 0 < t < 1

u(0) = u(1) = 0,
(1)
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where 1 < q ≤ 2 and Dq
0+ is the Riemann-Liouville fractional derivative. Jiang et.al

[24] studied existence of positive solutions for two-point boundary value problem of
the form {

Dα
0+u(t) + µa(t)f(t, u(t)) = 0

u(0) = u(1) = 0, 1 < α < 2,
(2)

where Dα
0+ is standard Riemann-Liouville fractional derivative. M. El-Shahed in

[7] studied sufficient conditions for existence and as well as nonexistence of positive
solutions to the two-point BVP{

Dαu(t) + λa(t)f(u(t)) = 0, 2 < α < 3

u(0) = u′′(0) = 0, γu′(1) + βu′′(1) = 0,
(3)

where 0 < t < 1, where λ is a positive parameter and Dα is Caputo’s fractional
derivative.

In this paper we study existence and uniqueness of solution for nonlinear three-
point boundary value problem corresponding to fractional order differential equa-
tion of the form {

Dαu(t) + f(t, u(t), u′(t)) = 0 1 < α ≤ 2,

u(0) = 0, Dpu(1) = δDpu(η), 0 < p < 1
(4)

where Dα is Caputo’s fractional derivative of order α, f is continuous and may be
nonlinear and the parameters satisfy 0 < δ < p < 1, 0 < η ≤ 1.

We recall some basic definitions and results. For α > 0, choose n = [α] + 1 in
case α in not an integer and n = α in case α is an integer.
Definition 1 The fractional order integral of order α > 0 of a function f : (0,∞) →
R is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds, (5)

provided the integral converges.
Definition 2 For a function f ∈ Cn[0, 1], the Caputo fractional derivative of order
α is define by

(Dα)f(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

provided that the right side is pointwise defined on (0,∞).
The following Lemmas give some properties of fractional integrals
Lemma 1[2] Fort β ≥ α > 0 and f ∈ L1[a, b], the following

DαIβa+f(t) = Iβ−α
a+ f(t)

holds almost everywhere on [a, b] and it is valid at any point t ∈ [a, b] if f ∈ C[a, b].
Lemma 2 [2] Let α > 0 then

Iα Dα
0 u(t) = u(t) + c0 + c1t+ · · ·+ cn−1t

n−1, for ci ∈ R. (6)

Lemma 3 [2] For g(t) ∈ C(0, 1), the homogenous fractional order differential equa-
tion Dα

0+g(t) = 0 has a solution

g(t) = c1 + c2t+ c3t
2 + · · ·+ cnt

n−1, ci ∈ R, i = 1, 2, 3, · · · , n. (7)
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We use the notations ∆ = 1−δη1−p

Γ(2−p) , G1(t, s) = −1
Γ(α) (t−s)α−1, G2(t, s) = −δt

∆Γ(α−p) (η−
s)α−p−1 and G3(t, s) = t

∆Γ(α−p) (1− s)(α−p−1).

Lemma 4 For y ∈ C[0, 1], 0 < δ < p < 1 and 0 < η ≤ 1, the boundary value
problem for fractional differential equation{

Dαu(t) + y(t) = 0 1 < α ≤ 2,

u(0) = 0, Dpu(1) = δDpu(η), 0 < p < 1
(8)

has a solution of the form

u(t) =

∫ 1

0

G(t, s) y(s) ds, (9)

where

G(t, s) =



G1(t, s) +G2(t, s) +G3(t, s) 0 ≤ s ≤ t ≤ η ≤ 1 ,

G2(t, s) +G3(t, s) 0 ≤ t ≤ s ≤ η ≤ 1 ,

G3(t, s) 0 ≤ t ≤ η ≤ s ≤ 1,

G1(t, s) +G2(t, s) +G3(t, s) 0 ≤ s ≤ η ≤ t ≤ 1 ,

G1(t, s) +G3(t, s) 0 ≤ η ≤ s ≤ t ≤ 1 ,

G3(t, s) 0 ≤ η ≤ t ≤ s ≤ 1 .

Proof. Applying the operator Iα on (8) and using lemma 1, we obtain

u(t) = −Iα0 y(t) + c1 + c2t. (10)

The boundary condition u(0) = 0 implies c1 = 0, thus we have

u(t) = −Iα0 y(t) + c2t which implies Dp
0+ u(t) = −Iα−py(t) + c2

t1−p

Γ(2− p)
.

The boundary condition Dpu(1) = δDp u(η) yields c2 = 1
∆ (−δIα−p y(η) +

Iα−p y(1)) where ∆ = 1−δη1−p

Γ(2−p) . Hence, (10) takes the form

u(t) = −Iα y(t) +
t

∆
(−δIα−p y(η) + Iα−p y(1)) (11)

which can be rewritten as

u(t) =
−1

Γ(α)

∫ t

0

(t− s)α−1 y(s) ds+
t

∆Γ(α− p)
(−δ

∫ η

0

(η − s)α−p−1 y(s) ds

+

∫ 1

0

(1− s)α−p−1 y(s) ds) =

∫ 1

0

G(t, s) y(s) ds.

2. MAIN RESULTS

We consider the space E = {u(t) ∈ C[0, 1] : u′(t) ∈ C[0, 1]} with the norm
defined by ∥u∥1 = maxt∈[0,1] |u(t)| + maxt∈[0,1] |u′(t)|. E is a Banach space [20].
In view of Lemma (1), the integral form of the BVP (4) is given by

u(t) = −Iαf(t, u(t), u′(t)) +
t

∆

(
− δIα−pf(η, u(η), u′(η)) + Iα−pf(1, u(1), u′(1))

)
=

∫ 1

0

G(t, s)f(s, u(s), u′(s)) ds, t ∈ [0, 1].

(12)
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By a solution of the the BVP (8), we mean solution of the integral equation (12).
Define an operator T : E → E by

Tu(t) =

∫ 1

0

G(t, s) f(s, u(s), u′(s)) ds, t ∈ [0, 1]. (13)

By continuity of f : [0, 1] × R × R → R and G on [0, 1] × [0, 1], the operator
T is continuous and solutions of the integral equation (12) are fixed points of the
operator T . In view of (12), we have

(Tu)′(t) = − Iα−1f(t, u(t), u′(t)) +
1

∆

(
− δ Iα−pf(η, u(η), u′(η))

+ Iα−p f(1, u(1), u′(1))
)
.

(14)

Assume that the following growth conditions hold:

(B1) There exists a nonnegative function m(t) ∈ L1([0, 1]) such that

|f(t, u(t), u′(t))| ≤ m(t) + a1 |u(t)|λ1 + a2 |u′(t)|λ2 ,

where a1, a2 ∈ R are nonnegative constants and 0 < λ1, λ1 < 1.
(B2) There exists a nonnegative function m(t) ∈ L1([0, 1]) such that

|f(t, u(t), u′(t)))| ≤ m(t) + a1 |u(t)|λ1 + a2 |u′(t)|λ2 ,

where a1, a2 ∈ R are nonnegative constants and λ1, λ1 > 1
(B3) There exist a constant k > 0 such that

|f(t, u(t), u′(t)))− f(t, v(t), v′(t)))| ≤ k (|u(t)− v(t)|+ |u′(t)− v′(t)|)

for each t ∈ [0, 1] and all u, v, u′, v′ real valued functions of t.

For convenience, use the following notations

h1(t) =

∫ 1

0

G(t, s) m(s) ds+
1

Γ(α− 1)

∫ t

0

(t− s)α−2 m(s) ds+

1

∆
(

δ

Γ(α− p)

∫ η

0

(η − s)α−p−1 m(s) ds+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1 m(s) ds)

(15)

h2(t) =
tα

Γ(α+ 1)
+

(t+ 1)(δηα−p + 1)

∆Γ(α− p+ 1)
+

1

Γ(α)
tα−1 (16)

ω1(t) =
1

Γα+ 1
tα+

t

∆Γ(α− p+ 1)
(δηα−p−1+1), ω2(t) =

tα−1

Γ(α)
+

δηα−p + 1

∆Γ(α− p+ 1)

and ϖ = ω1 + ω2. Choose R ≥ max{3h1, (3k1h2)
1

1−λ1 , (3k2h2)
1

1−λ2 } , where
k1 = maxt∈[0,1] a1(t), k2 = maxt∈[0,1] a2(t) and consider a closed bounded
subset U = {u(t) ∈ E : ∥u∥1 ≤ R, t ∈ [0, 1]} of E.
Theorem Under the assumption (B1) the BVP (4) has at least one solution.
Proof. The proof is based on Schauder’s fixed point theorem. For u ∈ U , using
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B1, we have

|Tu(t)| ≤ |
∫ 1

0

|G(t, s)| m(s) ds+ (a1(t)|u|λ1 + a2(t)|u′|λ2)

∫ 1

0

|G(t, s)| ds

≤
∫ 1

0

|G(t, s)| m(s) ds+ (a1(t)|u|λ1 + a2(t)|u′|λ2)(

∫ t

0

(|G1(t, s)) +G2(t, s)

+G3(t, s)|)ds+
∫ η

t

|G2(t, s) +G3(t, s)|ds+
∫ 1

η

|G3(t, s)| ds)

=

∫ 1

0

G(t, s) m(s) ds+ (a1(t)|u|λ1 + a2(t)|u′|λ2)(
tα

Γ(α+ 1)

+
δtηα−p

∆Γ(α− p+ 1)
+

t

∆Γ(α− p+ 1)
)

≤
∫ 1

0

G(t, s) m(s) ds+ (k1|u|λ1 + k2 |u′|λ2)(
tα

Γ(α+ 1)
+

δtηα−p

∆Γ(α− p+ 1)

+
t

∆Γ(α− p+ 1)
)

(17)

and in view of (14), we have

|T ′u(t)| ≤ 1

Γ(α− 1)
(

∫ t

0

(t− s)α−2 m(s) ds+ (k1|u|λ1 + k2|u′|λ2)∫ t

0

(t− s)α−2 ds) +
1

∆
(

δ

Γ(α− p)
(

∫ η

0

(η − s)α−p−1 m(s) ds

+ (k1 |u|λ1 + k2 |u′|λ2)

∫ η

0

(η − s)α−p−1 ds) +
1

Γ(α− p)

(

∫ 1

0

(1− s)α−p−1 m(s) ds+ (k1|u|λ1 + k2|u′|λ2)

∫ 1

0

(1− s)α−p−1 ds))

=
( 1

Γ(α− 1)

∫ t

0

(t− s)α−2 +
1

∆
(

δ

Γ(α− p)

∫ η

0

(η − s)α−p−1

+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1)
)
m(s) ds+ (

1

Γ(α)
tα−1 +

1

∆

δηα−p + 1

Γ(α− p+ 1)
)

(k1 |u|λ1 + k2 |u′|λ2).

Hence it follows that

∥Tu(t)∥1 ≤
∫ 1

0

G(t, s) m(s) ds+ (k1 |u|λ1 + k2 |u′|λ2)(
tα

Γ(α+ 1)

+
δtηα−p

∆Γ(α− p+ 1)
+

t

∆Γ(α− p+ 1)
) + (

1

Γ(α− 1)

∫ t

0

(t− s)α−2

+
1

∆
(

δ

Γ(α− p)

∫ η

0

(η − s)α−p−1 +
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1)) m(s) ds

(18)
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+ (
1

Γ(α)
tα−1 +

1

∆

δηα−p + 1

Γ(α− p+ 1)
)(k1 |u|λ1 + k2 |u′|λ2)

≤ (

∫ 1

0

G(t, s) +
1

Γ(α− 1)

∫ t

0

(t− s)α−2 +
1

∆
(

δ

Γ(α− p)

∫ η

0

(η − s)α−p−1

+
1

Γ(α− p)

∫ 1

0

(1− s)α−p−1)) m(s) ds+ (
tα

Γ(α+ 1)
+

(t+ 1)(δηα−p + 1)

∆Γ(α− p+ 1)

+
1

Γ(α)
tα−1)(k1 |R|λ1 + k2 |R|λ2).

Using (15), (16) and (18), we have

∥Tu(t)∥1 ≤ h1 + (k1 |R|λ1 + k2 |R|λ2) h2 ≤ R

3
+

R

3
+

R

3
= R

which implies that TU ⊂ U .
Now we show that T is completely continuous operator. Let

M = max{|f(t, u(t), u′(t))| : t ∈ [0, 1], u ∈ U},
then

|Tu(t)− Tu(τ)| = |
∫ 1

0

G(t, s)f(s, u(s), u′(s)) ds−
∫ 1

0

G(τ, s)f(s, u(s), u′(s)) ds|

≤ M |
∫ 1

0

(G(t, s)−G(τ, s)) ds|

= M |
∫ t

0

(t− s)α−1ds−
∫ τ

0

(τ − s)α−1ds+
t− τ

∆Γ(α− p)

(−δ

∫ η

0

(η − s)α−p−1 ds+

∫ 1

0

(1− s)α−p−1 ds)|

≤ M(
1

Γ(α+ 1)
(tα − τα) +

t− τ

∆Γ(α− p+ 1)
(δηα−p + 1)),

(19)

and

|T ′u(t)− T ′u(τ)| = | − Iα−1(f(t, u(t), u′(t))− f(τ, u(τ), u′(τ))|

≤ M

Γ(α− 1)
(

∫ t

0

(t− s)α−2 ds−
∫ τ

0

(τ − s)α−2ds)

=
M

Γ(α)
(tα−1 − τα−1).

thus

∥Tu(t)− Tu(τ)∥1 ≤ M(
1

Γ(α+ 1)
(tα − τα) +

t− τ

∆Γ(α− p+ 1)
(δηα−p + 1))

+
M

Γ(α)
(tα−1 − τα−1).

Since the functions tα−1, τα−1, tα, τα, are uniformly continuous on the interval [0,1],
it follows that T is equicontinuous and by Arzela-Ascoli theorem T is completely
continuous. By Schauder fixed point theorem T has a fixed point.
Lemma Under the assumption (B2), the boundary value problem (4) has a solu-
tion.
Proof. The proof is similar like theorem 2, so we exclude the proof.
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Theorem Assume that (B3) hold. If kϖ < 1 then the problem (4) has a unique
solution.
Proof. By the help of our supposition (B3), we have the following estimates

|Tu(t)− Tv(t)| =
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, u(s), u′(s))− f(s, v(s), v′(s))| ds

+
t

∆Γ(α− p)
(δ

∫ η

0

(η − s)α−p−1|f(s, u(s), u′(s))

− f(s, v(s), v′(s))| ds+
∫ 1

0

(1− s)α−p−1|f(s, u(s), u′(s))

− f(s, v(s), v′(s))| ds)

≤ 1

Γ(α+ 1)
tα(k{|u− v|+ |u′ − v′|})) + t

∆Γ(α− p+ 1)

(δηα−p−1(k{|u− v|+ |u′ − v′|}) + (k{|u− v|+ |u′ − v′|}))

≤ k{|u− v|+ |u′ − v′|}( 1

Γ(α+ 1)
tα +

t

∆Γ(α− p+ 1)

(δηα−p−1 + 1)) = kω1∥u− v∥1
(20)

By the help of (14) we have the following estimates

|T ′u(t)− T ′v(t)| = | 1

Γ(α− 1)

∫ t

0

(t− s)α−2|f(s, u(s), u′(s))

− f(s, v(s), v′(s))| ds+ 1

∆Γ(α− p)
(−δ

∫ η

0

(η − s)α−p−1

|f(s, u(s), u′(s))− f(s, v(s), v′(s))| ds+
∫ 1

0

(1− s)α−p−1

|f(s, u(s), u′(s))− f(s, v(s), v′(s))|)| ds

≤ k {|u− v|+ |u′ − v′|}( t
α−1

Γ(α)
+

δηα−p + 1

∆Γ(α− p+ 1)
)

= kω2∥u− v∥1
(21)

Thus by the help of (20) and (21) we have

∥Tu(t)− Tv(t)∥1 ≤ k ω1∥u− v∥1 + k ω2∥u− v∥1
= k(ω1 + ω2)∥u− v∥1 = kϖ∥u− v∥1

(22)

thus by contraction mapping principle the boundary value problem (4) has a unique
solution.
Example 1

D
3
2
t u(t) =

cos(t)
35(5+7|u(t)|+5|Du(t)|)

u(0) = 0, D
1
3u(1) = 1

10D
1
3u( 13 )

(23)

For the unique solution of problem (23), we apply theorem (2) with f(t, u(t), u′(t))

= cos(t)
35(5+7|u(t)|+5|Du(t)|) , t ∈ [0, 1], u(t), u′(t) ∈ [0,∞), α = 3

2 , p = 1
3 , δ = 1

10 ,

η = 1
3 and for u(t), u′(t), v(t), v′(t) we have that |f(t, u(t), u′(t))−f(t, v(t), v′(t))| ≤
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1
5{|u− v|+ |u′(t)− v′(t)|} and thus condition (A4) is satisfied. By computation we
have ϖ = 2.4389 and kϖ = .4878 < 1. Thus by theorem (2) the problem (23) has
a unique solution.
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