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EXACT SOLUTIONS OF TIME FRACTIONAL KOLMOGOROV

EQUATION BY USING LIE SYMMETRY ANALYSIS

A. OUHADAN AND E. H. EL KINANI

Abstract. In this work the Lie point symmetries admitted by α-time frac-

tional Kolmogorov differential equation are constructed. It is shown that the
obtained Lie point symmetries is used to transform α-time fractional Kol-
mogorov equation into a second order ordinary differential equation which is
solved in terms of special function.This analysis will be used to construct some

exact solutions.

1. Introduction

The first serious attempt to give a logical definition of a fractional derivative
is due to Liouville [1, 2] . There are several approaches to define the fractional
calculus, e.g. Riemann- Liouville, Grunwald-Letnikow, Caputo, and Generalized
Functions approach[1, 2, 12]. Recently, differential equations of fractional order
arise very naturally in solving a wide variety of phenomena in fluid mechanics, bi-
ology, physics and other areas of science [2, 12]. There is no well defined method
to analyze them. It has been studied relatively little, therefore few methods are
used like Laplace transform method, Fourier transform method, variation alter-
ation method, Adomian decomposition method, finite difference method and so on
[1, 2, 10, 11].

Lie’s symmetry group method for differential equations provides a powerful and
fundamental framework to the exploitation procedures leading to the integration
and plays a significant role in studying differential equations [see e.g [3]]. Methods
of constructing point symmetries admitted by differential equations were intensively
developed by several researchers [3, 4, 5, 6, 7, 8]. Consequently, different applica-
tions were discussed as reduction of order or number of independent variables, also
construction of integrator factor, exact solutions, conserved lows and other appli-
cations .

Methods of group analysis adapted to study symmetry properties of differen-
tial equations with fractional order derivatives is not yet studied widely except in
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special papers[7, 8, 9]. For example, in [7] the authors develops a framework to
obtain the α-th extended infinitesimal generator which is used in invariance cri-
terion. This allow them to establish an algorithm to determine the infinitesimal
transformations admitted by the studied fractional differential equation. This Lie
symmetry analysis is effectively used to find exact solutions of fractional differen-
tial equation as it was done for non fractional different linear and nonlinear partial
differential equations[3, 4, 5].

The main objective of this paper is to compute point symmetries admitted by
α-time fractional Kolmogorov differential equation given by

∂αu

∂tα
= x

∂2u

∂x2
+

γx

1 + 1
2γx

∂u

∂x
, γ > 0, x > 0. (1)

where ∂αu
∂tα is the fractional derivative of order α with 0 < α < 1. The case α = 1

is extensively studied and fundamental solution is given[6].

2. Preliminaries and Basic Definitions

In this section, we set up notation, basic definitions and main results of frac-
tional calculus. To begin with, recall that there are several approaches to define
the fractional calculus, e.g. Riemann- Liouville, Grunwald-Letnikow, Caputo, and
Generalized Functions approach.
Definition 1 The Riemann-Liouville fractional derivative operator Dα (α ≥ 0) of
a function u(t, x), is defined as

Dαu(t, x) =
∂αu

∂tα
=

{
∂nu
∂tn , α = n ∈ N

1
Γ(n−α)

∂n

∂tn

∫ t

0
u(υ,x)

(t−υ)α+1−n dυ, n− 1 < α < n, n ∈ N,

where Γ is the well-known gamma function, and some properties of the operator
Dα are as follows

Dαtγ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, α > 0, γ > −1, t > 0.

Dα1 =
t−α

Γ(1− α)
, α ≥ 0, t > 0.

Definition 2 The Caputo fractional derivative Dα
c of a function u(t, x) is defined

as

Dα
c u(t, x) =

∂αu

∂tα
=

{
∂nu
∂tn , α = n ∈ N

1
Γ(n−α)

∫ t

0
u(n)
υ (υ,x)

(t−υ)α+1−n dυ, n− 1 < α < n, n ∈ N,

where u
(n)
υ (υ, x) = ∂nu(υ,x)

∂υn and some properties of this derivation are as follows

Dα
c t

γ =
Γ(γ + 1)

Γ(γ + 1− α)
tγ−α, α > 0, γ > −1, t > 0.

Dα
c 1 = 0, α ≥ 0,

Dα

(
u(t, x)−

n−1∑
k=0

tk

k!
u
(k)
t (0+, x)

)
= Dα

c u(t, x), n− 1 < α < n, t > 0.

Some other properties of fractional derivative can be found in [1, 2]. In this paper,
we adopt the Riemann-Liouville fractional derivative and we can do the same in
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terms of Caputo contribution. Since in this paper 0 < α < 1 the Riemann-Liouville
fractional derivative definition becomes

∂αu

∂tα
=

1

Γ(1− α)

∂

∂t

∫ t

0

u(υ, x)

(t− υ)α
dυ.

3. Lie symmetry analysis method

Now consider the one parameter group of point transformations of the form

t̃ = t+ ετ(t, x, u) + o(ε),

x̃ = x+ εξ(t, x, u) + o(ε),

ũ = u+ εφ(t, x, u) + o(ε), (2)

with coresponding infinitesimal generator which is

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ φ(t, x, u)

∂

∂u
.

Definition 3 A solution u = θ(t, x) is said to be invariant solution of fractional
partial differential equation (1) if and only if

a) u = θ(t, x) is an invariant surface, i.e. Xθ = 0 ⇒ (τ ∂
∂t + ξ ∂

∂x + φ ∂
∂u )θ = 0,

b) u = θ(t, x) satisfies equation (1).

As equation (1) is a time fractional partial differential equation having the form

∂αu

∂tα
= F (t, x, u, ux, uxx, ...),

where subscripts denote partial derivatives, we will need to extend the infinitesimal
generator X to Xα of the form

Xα = X + φx ∂

∂ux
+ φxx ∂

∂uxx
+ φα ∂

∂uα
,

such that uα = ∂αu
∂tα and φx, φxx, φα are extended infinitesimals of order 1,2 and α

respectively. φx and φxx have the form[3, 4, 5]

φx = φx + (φu − ξx)ux − τxut − ξuu
2
x − τuuxut, (3)

φxx = φxx + (2φxu − ξxx)ux − τxxut + (φuu − 2ξxu)u
2
x − 2τxuuxut

− ξuuu
3
x − τuuu

2
xut + (φu − 2ξx)uxx − 2τxuxt − 3ξuuxuxx

− τuuxxut − 2τuuxuxt. (4)

Nevertheless, the αth extended infinitesimal φα related to Riemann-Liouville frac-
tional time derivative is established and has the following form[7]

φα = Dα
t (φ) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (Dt(τ)u)−Dα+1
t (τu) + τDα+1

t (u),

where Dα
t denotes the total time fractional derivative.

Let us recall some useful properties concerned the total fractional derivative
operator Dν

t . We start with the generalized Leibnitz’s formula [1, 2, 12] given by

Dν
t (f(t)g(t)) =

+∞∑
n=0

(
ν

n

)
Dν−n

t f(t)Dn
t g(t), ν > 0,
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where (
ν

n

)
=

(−1)n−1νΓ(n− ν)

Γ(1− ν)Γ(n+ 1)
,

and the chain rule for composite function [1, 2, 12] which is

dng(y(t))

dtn
=

n∑
k=0

k∑
r=0

(
k
r

)
1

k!
[−y(t)]r × dn

dtn
[(y(t))k−r]

dkg(y)

dyk
.

Since u = u(t, x) and φ = φ(t, x, u) an important formula gives Dα
t [φ(t, x, u)] in

terms of partial derivatives found in[1, 7] which is given by:

Dα
t [φ(t, x, u)] =

+∞∑
n=0

n∑
m=0

m∑
k=0

k∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1

k!

tn−α

Γ(n+ 1− α)
×

× [−u(t, x)]r ∂
m

∂tm
([u(t, x)]k−r)

∂n−m+kφ(t, x, u)

∂tn−m∂uk
.

From the above formula and applying Leibnitz formula for ∂α(uφu)
∂tα the expression

of Dα
t φ(t, x, u) will have the following form

Dα
t (φ) =

∂αφ

∂tα
+ φu

∂αu

∂tα
− u

∂αφu

∂tα
+

+∞∑
n=1

(
α

n

)
∂nφu

∂tn
Dα−n

t (u) + µ,

with

µ =
+∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α

n

)(
n

m

)(
k

r

)
1

k!
×

× tn−α

Γ(n+ 1− α)
[−u]r ∂

m

∂tm
(uk−r)

∂n−m+kφ

∂tn−m∂uk
. (5)

Consequently, the α-th extended infinitesimal φα can be rewritten as

φα =
∂αφ

∂tα
+ (φu − αDt(τ))

∂αu

∂tα
− u

∂αφu

∂tα
+ µ

+

+∞∑
n=1

[(
α

n

)
∂nφu

∂tn
−
(

α

n+ 1

)
Dn+1

t (τ)

]
Dα−n

t (u)

−
+∞∑
n=1

(
α

n

)
Dn

t (ξ)D
α−n
t (ux). (6)

Here in our case, the term µ vanishes. This is a consequence of µuu = 0 which
is obtained in analyzing of invariance condition studied in next section.
Definition 4 By definition, transformations (2) form a symmetry group of equa-
tion (1) if they transform solution of equation (1) to an other solution of the same
equation. Therefore, equation (1) is invariant under transformations (2) if and only
if the invariance condition is satisfies,i.e

φα − (uxx + f ′(x)ux)ξ − f(x)φx − xφxx = 0, whenever ∆ = 0. (7)

with ∆ = uα − xux − f(x)uxx and f is the drift function given by

f(x) =
γx

1 + 1
2γx

.
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Equation (7) defines all infinitesimal symmetries of equation (1)
Theorem 1 The basis of the symmetry Lie algebras admitted by equation (1) is
spanned by vector fields

X1 =
∂

∂t
, X2 = u

∂

∂u
,

X3 = αx
∂

∂x
+ t

∂

∂t
+

2α

2 + γx
u
∂

∂u
, Xh = h(t, x)

∂

∂u
,

where h(t, x) is an arbitrary solution of equation (1).
Proof. To obtain general form of infinitesimals ξ, τ and φ, we need to substitute
expressions (3),(4) and (6) into invariance condition (7). The equation depends on
variables ux, uxx, ut, uxt, ... and Dα−n

t u,Dα−n
t ux for n = 1, 2, .... These variables

are considered to be independent variables[7].

Splitting the defining equation (7) with respect to independents variables men-
tioned above leads to the system of infinitely equations

ξt = ξu = τx = τu = φuu = 0, (8)

xφu − αxτt − ξ − x(φu − 2ξx) = 0, (9)

−αf(x)τt − f ′(x)ξ + f(x)ξx − x(2φxu − ξxx) = 0, (10)

∂αφ

∂tα
− u

∂αφu

∂tα
− f(x)φx − xφxx = 0, (11)(

α

n

)
∂nφu

∂tn
−
(

α

n+ 1

)
Dn+1

t τ, n = 0, 1, 2, ... (12)

Examining equations (8) and (9) in the above system, we readily obtain

ξ(x) = aαx+m
√
x, and τ(t) = at+ b,

with a, b and m are arbitrary constants. In virtue of φuu = 0, φ must be linear in
u. Thus

φ = g(t, x)u+ h(t, x),

for some functions g(t, x) and h(t, x). On the other hand, equation (12) requires
that

∂φu

∂t
= 0, then g = g(x).

We substitute these in equation (11) to derive that the function h is an arbitrary
solution of the original fractional differential equation (1). Substituting ξ and τ by
their expressions into equation (10) leads to the equation

g′(x) =
1

4x
√
x
mf(x)− 1

2
(aα+

√
x

x
m)f ′(x)− m

8x
√
x
. (13)

Differentiation of the equation (11) over u leads to

xg′′(x) + f(x)g′(x) = 0. (14)

Differentiation of equation (13) with respect the independent variable x and sub-
stituting this into equation (14), leads

− aα

2
x
d

dx
Lf + 16−1mx−

1
2 [3 + 8Lf − 8x

d

dx
Lf ] = 0, (15)
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with Lf = xf ′ − f + f2

2 . Finally, equation (15) determines m and a. Obviously,
the drift function in this case satisfies

Lf = xf ′ − f +
f2

2
= 0.

Thus the constant a appeared in equation (15) is arbitrary and m vanishes. This
implies that infinitesimals ξ, τ and φ becomes

ξ = aαx, τ = at+ b, φ = (
2aα

2 + γx
+ c)u+ h(t, x),

where a, b, c are arbitrary constants and h(t, x) is an arbitrary solution of equa-
tion (1). Finally, the symmetry algebra admitted by equation (1) is spanned by
infinitesimal generators

X1 =
∂

∂t
,

X2 = u
∂

∂u
,

X3 = αx
∂

∂x
+ t

∂

∂t
+

2α

2 + γx
u
∂

∂u
,

Xh = h(t, x)
∂

∂u
.

Theorem 2 The similarity variable and similarity transformation corresponding
to the infinitesimal generator X3 reduce Kolmogorov time fractional equation to
second order ordinary differential equation

zψ′′(z) + (2− vz)ψ′(z) = 0, with v =
Γ(1− α)

Γ(1− 2α)
,

which gives arise of an exact solution of (1) given by

u1(t, x) =
c1x

2 + γx
+

c2x

2 + γx

[
−exp(vxt−α)

vxt−α
− Ei(1,−vxt−α)

]
, (16)

with Ei is the exponential integral special function.
Proof. Similarity variables corresponding to infinitesimal generator X3 can be
obtained by solving the characteristic equation

dx

αx
=
dt

t
=

(2 + γx)du

2αu
.

The invariants of this operator are of the form

z = xt−α, and I =
2 + γx

x
u.

Exact solution which can be constructed in this case will be of the form

u(t, x) =
x

2 + γx
ψ(z),

where the function ψ satisfies the reduced second order ordinary differential equa-
tion of time fractional Kolmogorov differential equation given by

zψ′′(z) + (2− vz)ψ′(z) = 0, with v =
Γ(1− α)

Γ(1− 2α)
.
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From the out put of Maple, the solution of the above second order differential
equation is given in terms of exponential integral special function Ei by

ψ(z) = c1 + c2(−
exp(vz)

vz
− Ei(1,−vz)),

where c1 and c2 are arbitrary constants. Then, it immediately leads to an exact
solution of equation (1) which has the expression

u1(t, x) =
c1x

2 + γx
+

c2x

2 + γx

[
−exp(vxt−α)

vxt−α
− Ei(1,−vxt−α)

]
. (17)

Remark 1 To obtain the group transformation generated by infinitesimal generator
X3, we solve the system of first order ordinary differential equations,

dt̃

dε
= ξ(t̃, x̃, ũ),

dx̃

dε
= φ(t̃, x̃, ũ),

dũ

dε
= φ(t̃, x̃, ũ),

subject to the initial conditions

t̃(0) = t, x̃(0) = x, ũ(0) = u.

The one-parameter groups G generated by X3 is given as follows. The entries gives
the transformed point exp(εX3)(t, x, u) = (t̃, x̃, ũ):

G : (xeαε, teε, e
α
2 ε

√
2 + γx

2 + γxeαε
u).

As G is a symmetry group, so if u(t, x) is a solution of equation (1), then is the
transformed functions ε.u(t, x) which is given by

ε.u(t, x) = e
α
2 ε

√
2 + γxe−αε

2 + γx
u(e−εt, e−αεx),

where ε is sufficiently small real number. Now we consider the applications of the
above transformation. If we start from exact solution obtained in (16), we get a
new exact solution of (1)as:

u2(t, x) = e
α
2 ε

√
2 + γxe−αε

2 + γx
u1(e

−εt, e−αεx). (18)

Further more, we continue this iteration process, we can derive other exact solutions
of equation (1).

4. Conclusion

In this paper, the fractional prolongation formulae of infinitesimal generator
was successfully used to compute Lie point symmetries of α-time fractional Kol-
mogorov equation. It is shown that a set of defining equations for infinitesimals
transformations is completely solved. Consequently, the equation (1) is invariant
under translation in t generated by X1, scaling in u generated by X2, α-scaling
generated by X3 and one parameter group generated by Xh reflecting linearity of
equation (1). Therefore, using Lie point symmetry analysis we see that fractional
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Kolmogorov equation can be transformed into a second order ordinary differential
equation which is solvable in terms of special function and then some exact solu-
tions was found.
An important extension of this analysis is to study this equation with a large family
of drift functions. This perspective will be tackled in coming paper.
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