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BERNSTEIN COLLOCATION TECHNIQUE FOR

VOLTERRA-FREDHOLM FRACTIONAL ORDER INTEGRO-

DIFFERENTIAL EQUATIONS

T. OYEDEPO , G. AJILEYE, A. M. AYINDE, I. J. OTAIDE

Abstract. In this study, we solve Fractional Volterra-Fredholm Integro-Differ

ential Equations (FVFIDEs) using the Bernstein Collocation Technique (BCT).

The approach breaks the problem down into a set of linear algebraic equations,
which are then resolved by matrix inversion to get the unknown constants. The

accuracy and effectiveness of the procedure are demonstrated using numerical

examples in tables and figures. The outcomes demonstrate that the strategy
worked better in terms of increasing accuracy and necessitating less strenuous

labour.

1. Introduction

This work focuses on fractional calculus, which is calculus with fractional deriva-
tives. The ideal is that we have the first derivative, which is velocity, and the second
derivative, which is acceleration, and to be able to have any derivative between the
first and second derivatives. [1], [2], [3], [4], and among others claim that Leibniz
made the discovery in 1695, just a few years after making the discovery of ordinary
calculus, but due to the complicated formula for these fractional derivatives, it was
later forgotten, making it difficult to work with ordinary pencil and paper, but now
that we have computers and machines running, complexity is no longer a problem.
The best way to model anomalous phenomena, such as heat spreading in a furnace,
plasma, or the flow of water beneath the ground, is with fractional calculus. It is
also used to model the spread of virus, satellite disposition in space, and system
memory behavior. Mathematicians and other scientists have developed a keen in-
terest in fractional calculus, which has led to a great deal of recent attention being
paid to fractional differential and FVFIDE solutions. Finding accurate approxima-
tions utilizing numerical techniques would be very helpful because many FVFIDEs
cannot be solved analytically. Many authors have presented numerical methods
for solving the FVFIDEs, including the following: Adomian decomposition tech-
nique (ADM) was utilized by [5] to solve Fractional Integro-Differential Equations
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(FIDEs), Bernstein polynomials were employed as basis functions by [6] to approxi-
mate the solution of FIDEs. [7] and [8] presented the Least Squares Method (LSM)
for solving FIDEs. [9] and [10] used the collocation method for solving FIDEs.[11]
used Laguerre polynomials as a basis, and [12] presented fractional order approxi-
mations to FVFIDEs. [13] used the Chebyshev wavelet method to solve nonlinear
FVFIDEs with mixed boundary conditions. [14] introduced numerical solution of
FVFIDEs with mixed boundary conditions using the Chebyshev wavelet method;
[15] used a combination of Lucas wavelets and Legendre-Gauss quadrature; [16]used
Lagrange polynomials; and so on. Motivated and inspired by the preceding work,
we propose Bernstein Collocation Techniques with improving accuracy and less
rigorous work for FVFIDEs. In this work, the fractional derivative for the prob-
lem under consideration is taken for α=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1, yielding
various approximate solutions. The class of problem studied in this work is:

µ2ϕ
′′
(x) + µ1ϕ

′
(x) + µαD

αϕ(x) + µ0ϕ(x) = f(x) + λ1

∫ x

0

K1(x, t)ϕ(x)dt

+ λ2

∫ 1

0

K2(x, t)ϕ(x)dt, (1)

Subject to this boundary conditions

ϕ(a) = 0, ϕ(b) = 0, a < x < b (2)

K1(x, t) and K2(x, t) are the Fredholm and Volterra intergral kernel functions,
µ1, µ2, µα, λ1 and λ2 are known constants, f(x) is a known function and ϕ(x) is
the unknown function to be determined. Where Dαϕ(x) indicates the αth Caputo
fractional derivative of ϕ(x).

Definition 1. The Caputo Fractional Derivative is defined as [17]:

Dαf(x) =
1

Γ(j − α)

∫ x

0

(x− s)j−α−1f j(s)ds (3)

where j is a positive integer with the property that j − 1 < α < j. For example if
0 < α < 1 the Caputo fractional derivative is

Dαf(x) =
1

Γ(1− α)

∫ x

0

(x− s)−αf
′
(s)ds (4)

Definition 2. Bernstein basis polynomials: A Bernstein polynomial [18] of
degree j is defined by:

ϕ(x) = ξi,j(x) =
(
j
i

)
xi(1− x)j−ici i = 0, 1...j (5)

where

(ji ) =
j!

i!(j − i)!
and ci, i = 0, 1, 2, · · ·
The following are the few Bernstein basis polynomials:
when j = 0, ϕ(x) = 1
when j = 1, ϕ(x) = c0(x− 1) + c1x
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when j = 2, ϕ(x) = c0(1− 2x+ x2) + c1(2x− 2x2) + c2x
2

Definition 3. Here, we defined Absolute Error (AE) as follows:

Absolute Error = |Φ(x)− ϕ(x)|; 0 ≤ x ≤ 1 (6)

where the Exact Solution (ES) is Φ(x) and the Approximate Solution (AS) is ϕ(x).

2. Demonstration of the suggested method

Bernstein Collocation Technique (BCT). The approach relies on approx-
imating the unknown function ϕ(x) by assuming an approximation solution of the
kind specified in equation (5), using equation (2) on equation (1), and getting the
following result for equation (1) :

µ2ϕ
′′
(x) + µ1ϕ

′
(x) + µα(

1

Γ(1− α)

∫ x

0

(x− t)j−α−1 d
j

dtj
ϕ(t)dt) + µ0ϕ(x) = f(x)+

λ1

∫ x

0

K1(x, t)ϕ(x)(t)dt+ λ2

∫ 1

0

K2(x, t)ϕ(x)(t)dt, (7)

Let ζ(x) = µα(
1

Γ(1− α)

∫ x

0

(x− s)j−α−1 d
j

dtj
ϕ(t)dt), η(x) = λ1

∫ x

0

K1(x, t)ϕ(x)(t)dt,

τ(x) = λ2

∫ 1

0

K2(x, t)ϕ(x)(t)dt

Substituting ζ(x), η(x) and τ(x) in equation (7)

µ2ϕ
′′
(x) + µ1ϕ

′
(x) + ζ(x) + µ0ϕ(x)− η(x)− τ(x) = f(x) (8)

Collocating equation (8) at xi = a + (b−a)i
j+1 , (i = 1(1)(j + 1)) gives linear system

algebraic of equations in (j + 1) unknown constants c′is. Additional two equations
are obtained using the boundary conditions, which are represented in matrix form:



M11 M12 M13 · · · · · · · · · M1n

M21 M22 M23 · · · · · · · · · M2n

...
...

...
...

...
...

...
...

Mm1 Mm2 Mm3 · · · · · · · · · Mmn

M∗11 M∗12 M∗13 · · · · · · · · · M∗1n
M∗21 M∗22 M∗23 · · · · · · · · · M∗2n





c0
c1
...
...
...
...
cn


=



N11

N22

...

...
Nmn

0
0


(9)

where Mis and M∗is are the coefficients of cis given as:

M11,M12,M13, ... M1n = µ2ϕ
′′
(x1) + µ1ϕ

′
(x1) + ζ(x1) + µ0ϕ(x1)− η(x1)− τ(x1),

M21, A22,M23, ... M2n = µ2ϕ
′′
(x2) + µ1ϕ

′
(x2) + ζ(x2) + µ0ϕ(x2)− η(x2)− τ(x2),

M31,M32, A33, ... M3n = µ2ϕ
′′
(x3) + µ1ϕ

′
(x3) + ζ(x3) + µ0ϕ(x3)− η(x3)− τ(x3)

M∗11,M
∗
12,M

∗
13, ... M

∗
1n = ϕ(a),M∗21,M

∗
22,M

∗
23, ... M

∗
2n = ϕ(b), and Nis are values of
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f(xi). The matrix inversion approach is then used to solve the system of equations
in order to get the unknown constants.

c0
c1
...
...
...
...
cn


=



M11 M12 M13 · · · · · · · · · M1n

M21 M22 M23 · · · · · · · · · M2n

...
...

...
...

...
...

...
...

Mm1 Mm2 Mm3 · · · · · · · · · Mmn

M∗11 M∗12 M∗13 · · · · · · · · · M∗1n
M∗21 M∗22 M∗23 · · · · · · · · · A∗2n



−1

N11

N22

...

...
Nmn

0
0


(10)

Solving equation (10) to get the values of unknown constant which are substituted
back into the assumed approximate solution to get the required approximate solu-
tion.

3. Numerical Applications

Example 1: Consider the following FIDE [12]

ϕ
′′
(x) +

1

x
Dαϕ(x) +

1

x2
ϕ(x)−

∫ x

0

sin (x− t)ϕ(t)dt−
∫ 1

0

cos (x− t)ϕ(t)dt

= 1.50451x
1
2 − 13x− 180541

100000
x

3
2 − x2 + x3 − 2067

1000
x cos (x) +

595385

100000
sin (x) (11)

ϕ(0) = 0, ϕ(1) = 0, for α = 0.5, the exact solution is ϕ(x) = x2 − x3. Using the
suggested method for various values of α = 0.1, 0.2, o.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
we have the following approximate solutions.
For α = 0.1, ϕ(x) = −0.01098588449x5 + 0.07304092856x4 − 0.995230193x3 +
0.879438378x2+ 0.01106390911x+ 3.552713679× 10−14

For α = 0.2,−0.008943751595x5+0.06025371458x4−0.9986701444x3+0.9029646681x2+
0.009100041105x− 5.329070518× 10−15

For α = 0.3,−0.0064430822x5+0.044109271x4−1.001215500x3+0.9309930461x2+
0.006638926830
For α = 0.4,−0.003461973034x5+0.02415682014x4−1.002005896x3+0.9634405890x2+
0.003621558466x+ 7.105427358× 10−15

For α = 0.5,1.170384552 × 10−7x5 − 1.595538298 × 10−7x4 − 0.9999997042x3 +
0.9999989556x2−
3.536126058× 10−8x− 5.684341886× 10−14

For α = 0.6,−0.003906450454x5−0.02859369682x4−0.9940850253x3+1.040072119x2−
0.004251101546x− 7.105427358× 10−14

For α = 0.7,0.008171856510x5−0.06156205804x4−0.9832340789x3+1.082713192x2−
0.009115484491x+ 1.136868377× 10−13

For α = 0.8,0.01265688334x5−0.09840341234x4−0.9667374650x3+1.126590898x2−
0.01451302266x+ 1.705302566× 10−13

For α = 0.9,0.01716593076x5−0.1380207200x4+0.9445330664x3+1.170035228x2−
0.02028349224x+ 1.136868377× 10−13

For α = 1,0.01260222492x5+0.08291190306x4−0.9916111581x3+0.8603389039x2+
0.01259110448x+ 2.131628207× 10−13
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Table 1. Comparison of the AE is shown in Table 1 for example 1

x [12] AE j=4 [12] AE j=32 Our Method AE J=5
0.0 − − 5.684E − 14
0.2 2.330E − 2 2.048E − 5 6.670E − 8
0.4 2.690E − 2 2.503E − 5 1.652E − 7
0.6 1.011E − 2 1.789E − 5 3.449E − 7
0.8 3.697E − 3 7.682E − 5 5.723E − 7
1.1 − - 8.265E − 7

Table 1 demonstrates that our approach performed more accurately than [12],
and Figure 1 displays the approximate solution for various values of α = 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

Figure 1. Displaying the graphical behavior of example 1’s ES and AS

Example 2: Reference considers [12] FIDE

ϕ
′′
(x) +Dαϕ(x)− 2

∫ x

0

(x− t)ϕ(t)dt−
∫ 1

0

(x2 − t)ϕ(t)dt

=
1

30
− 6x− 181x2

20
+ 4x3 − x5

10
+
x6

15
(12)

ϕ(0) = 0, ϕ(1) = 0, for α = 1, the exact solution is ϕ(x) = x4 − x3. Using the
suggested method for various values α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, we
have the following approximate solutions.
For α = 0.1, ϕ(x) = 0.009175645816x5+0.9921654864x4−1.005058512x3+0.001416362828x2+
0.002301126448x− 4.955635769× 10−8

For α = 0.2, ϕ(x) = 0.02073681840x5+0.9815451666x4−1.010391949x3+0.00291542454x2+
0.005194750461x− 9.1923244818× 10−8
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For α = 0.3, ϕ(x) = 0.03487738114x5+0.9675347720x4−1.015494815x3+0.00435094048x2+
0.008732014642x− 1.194294611× 10−8

For α = 0.4, ϕ(x) = 0.05174521116x5+0.9495191575x4−1.019764534x3+0.0055416762x2+
0.01295882468x− 1.263124507× 10−7

For α = 0.5, ϕ(x) = 0.07140013477x5+0.9269557121x4−1.022544839x3+0.00628135746x2+
0.01790796527x− 1.100546865× 10−7

For α = 0.6, ϕ(x) = 0.09376065321x5+0.8994913703x4−1.023197684x3+0.00635853356x2+
0.02358740594x− 7.420652044× 10−8

For α = 0.7, ϕ(x) = 0.1185439063x5+0.8671071458x4−1.021202676x3+0.0055875413x2+
0.02996427503x− 2.874659927× 10−8

For α = 0.8, ϕ(x) = 0.1452072917x5+0.8302743464x4−1.016175743x3+0.038494765x2+
0.03694472287x− 9.990275198× 10−9

For α = 0.9, ϕ(x) = 0.1729049655x5+0.7900931958x4−1.008487683x3+0.0011378685x2+
0.04435167467x+ 2.268940275× 10−9

For α = 1, ϕ(x) = 6.354667771 × 10−9x5 + x4 − x3 − 7.003654019 × 10−10x2 +
7.477633656× 10−10x+ 1.139230281× 10−12

Table 2. Comparison of the AE is shown in Table 2 for example 2

x ES AS AE
0.0 0.0000 0.0000 0.0000
0.2 −0.0064 −0.0064 0.0000
0.4 −0.0384 −0.0384 0.0000
0.6 −0.0684 −0.0684 0.0000
0.8 −0.1024 −0.1024 0.0000
1.1 0.0000 0.0000 0.0000

The results of our method were exact, as shown in Table 2.2. Figure 2 displays the
approximate solution for various values of α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
indicating that the calculation was more accurately done as the table of error ob-
tained is smaller than [12].
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Figure 2. Displaying the graphical behavior of example 2’s exact and
approximate solutions

4. Numerical Applications

This research reported on the numerical solution of FVFIDEs using BCT. Using
numerical computations, we verified that the proposed strategy is in superb agree-
ment with the precise result. In comparison to [12] result, the BCT solution is more
accurate. The researchers can use this technique on other FVFIDEs based on their
findings.
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