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ON NUMERICAL APPROXIMATION OF SECOND-ORDER

FRACTIONAL DIFFERENTIAL EQUATIONS IN THE FRAME

OF THE CAPUTO FRACTIONAL DERIVATIVE

GABRIEL MONZÓN

Abstract. Numerical rules to approximate the Caputo fractional derivative
and the Riemann-Liouville integral operator given in [25] are used to deduce

a numerical method to approximate the solution of arbitrary Second-Order

Fractional Differential Equations with constant coefficients in the frame of the
Caputo fractional derivative.

Consistency of the method is proved and we illustrate its applicability and
convergence with numerical examples.

1. Introduction

Fractional Differential Equations (shortly, FDEs) are involved in many mathe-
matical modelings such as dynamic of viscoelastic material [1, 17], economics [2, 15],
continuum and statistical mechanics [21], solid mechanics [30], electrochemistry
[28], biology [6] and acoustics [7] just to mention a few examples.

In this context, the search for numerical methods that approximate the solution
of FDEs has grown in recent years. In fact, there are many and diverse numerical
methods proposed for different classes of FDEs (see, for instance, [5, 8, 9, 10, 14,
16, 18, 19, 20, 31]), however, most of them deal with solutions of single term or
multi-order FDEs. In particular, as far as we know, FDEs where iterated deriva-
tives are also involved have not been widely considered. Indeed, the bibliography on
the matter is scarce even in the case of Second-Order Fractional Differential Equa-
tions (shortly, SOFDEs), i.e. FDEs where a fractional derivative and its iterated
derivative are involved.

In [12, 13] general methods, based on the variation of parameters and on the
Homotopy Perturbation Method respectively, have been presented to solve SOFDEs
where the fractional derivative is described in the conformable sense. On the other
hand, in [27] the generalized Taylor’s formula was used in order to describe the
solution of a concrete SOFDE in the frame of the Caputo fractional derivative.
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In this work, we present a numerical scheme to approximate the solution of
arbitrary SOFDEs with constant coefficients and where the fractional derivative
is described in the Caputo sense. Essentially, the proposed method is based on
rewriting the Fractional Differential Equation as an Integro-Differential Equation
and, in a discretization of the domain, using numerical rules to approximate the
fractional derivative and the Riemann-Liouville integral operator.

Regarding the numerical rules, we consider the Modified Trapezoidal Rule (MTR)
and the Caputo Fractional Derivative Rule (CFDR) introduced in [25, 26]. The
MTR is a generalization of the classical trapezoidal rule used to approximate the
Riemann-Liouville integral operator of fractional order for a given function by a
weighted sum of function values at specified points. On the other hand, the CFDR
is an algorithm to approximate the Caputo fractional derivative for a given func-
tion by a weighted sum of function and its ordinary derivatives values at specified
points.

By approximating the ordinary derivative of a function by a weighted sum of
suitable evaluations (classical finite-difference scheme), we achieve that the method
uses only function values at specific points. In this sense, the proposed approach
can be regarded as a finite-difference type scheme. Furthermore, the method is
reduced to solving a linear algebraic system and, since the associated matrix is a
lower triangular one, its implementation is extremely simple.

The organization of the paper is as follows: In Section 2, we introduce basic
definitions and notations and give a brief overview of the Modified Trapezoidal
Rule and the Caputo Fractional Derivative Rule. In Section 3, the rewritting of the
Fractional Differential Equation as an Integro-Differential Equation is presented
and the development of the method is given, we show that such method is con-
sistent and we also partially study the approximation error. In Section 4, some
numerical examples are presented with the aim to illustrate the applicability and
the convergence of the method. Finally, conclusions and additional comments will
be given in Section 5.

2. The numerical rules

Let 0 < s < 1. We recall that the Riemann-Liouville integral operator of u of
order s is defined as

Is0u(x) =
1

Γ(s)

∫ x

0

(x− t)s−1u(t) dt (x ≥ 0). (1)

Details and properties of the operator Is0 can be found in [4, 22]. The Caputo
fractional derivative of u of order s can be defined by I1−s

0 as follows [4, 11]

Ds
0u = I1−s

0 u′,

where u′ denotes the ordinary derivative of u, i.e.

Ds
0u(x) =

1

Γ(1− s)

∫ x

0

u′(t)

(x− t)s
dt (x ≥ 0). (2)

The operators Is0 and Ds
0 are also related in the following ways

Ds
0I

s
0u = u (3)

and

Is0D
s
0u(x) = u(x)− u(0) (4)
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(see, for instance, Theorems 3.7 and 3.8 in [4] respectively).

In what follows we will give a brief overview of the Modified Trapezoidal Rule and
the Caputo Fractional Derivative Rule that allow us to approximate the operator Is0
and the operator Ds

0, respectively, at the nodes of a uniform partition of a certain
interval [0, a] (see [25, 26] for more details). In order to keep our explanation as
simple as possible, we are going to consider a = 1, i.e. the interval considered will
be [0, 1].

Let n ≥ 1. Suppose that the interval [0, 1] is subdivided into subintervals
[xk, xk+1] of equal width h = 1

n by using the nodes xk = kh, for k = 0, 1, . . . , n.
For any k = 0, 1, . . . , n, we use uk to denote the function value u(xk) and define

Uk =


u0

u1

...
uk

 .
Modified Trapezoidal Rule. For any k = 1, . . . , n, the value Is0u(xk) can be

approximated [25, 26] by the quantity Tk(Uk, h, s) given by

Tk(Uk, h, s) =
hs

Γ(s+ 2)

[
αku0 +

k∑
i=1

δkiui

]
(5)

with

αk = (k − 1)s+1 − (k − s− 1)ks

and

δki =

{
(k − i+ 1)s+1 − 2(k − i)s+1 + (k − i− 1)s+1 i < k

1 i = k
.

From [25, Theorem 2] we know that, for any k = 1, . . . , n,

Is0u(xk) = Tk(Uk, h, s) + EI
k ; (6)

and, if u ∈ C2[0, 1], there is a positive constant CI depending only on s such that

|EI
k | ≤ CIh

2‖u‖2,∞. (7)

Caputo Fractional Derivative Rule. For k = 1, . . . , n, the Caputo fractional
derivative at xk, Ds

0u(xk), can be approximated [25, 26] by the value Ck(u, h, s)
given by

Ck(u, h, s) =
h1−s

Γ(3− s)

[
aku
′(0) +

k∑
i=1

dkiu
′(xi)

]
(8)

with

ak = (k − 1)2−s − (k + s− 2)k1−s

and

dki =

{
(k − i+ 1)2−s − 2(k − i)2−s + (k − i− 1)2−s i < k

1 i = k
.

Indeed, from [25, Theorem 3] we know that, for any k = 1, . . . , n,

Ds
0u(xk) = Ck(u, h, s) + EC

k (9)
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where

|EC
k | ≤ C ′sh2‖u‖3,∞ (u ∈ C3[0, 1]) (10)

with C ′s a positive constant depending only on s.

We use (8) to obtain a rule to approximate the Caputo fractional derivative by
using only evaluations of the function. Indeed, from the Taylor expansion of first
order of u we deduce the following identities

u′(0) =
u1 − u0

h
− h

2
u′′(ξ0), (11)

u′(xk) =
uk − uk−1

h
+
h

2
u′′(ξk), 1 ≤ k ≤ n, (12)

with ξ0 ∈ (0, x1) and ξk ∈ (xk−1, xk) for any k = 1, 2, . . . , n.

Now, combining (11)-(12) with (8), for any k = 1, 2, . . . , n, we obtain

Ck(u, h, s) =
h−s

Γ(3− s)

[
ak(u1 − u0) +

k∑
i=1

dki(ui − ui−1)

]
+Rk(u, h, s) (13)

where

Rk(u, h, s) =
h2−s

2Γ(3− s)

[
−aku′′(ξ0) +

k∑
i=1

dkiu
′′(ξi)

]
. (14)

For any k = 1, 2, . . . , n we define

C∗k(Uk, h, s) =
h−s

Γ(3− s)

[
(ak + dk1)(u1 − u0) +

k∑
i=2

dki(ui − ui−1)

]
; (15)

therefore

Ck(u, h, s) = C∗k(Uk, h, s) +Rk(u, h, s).

As expected, the Caputo fractional derivative of u at xk, Ds
0u(xk), can be ap-

proximated by the value C∗k(Uk, h, s). Indeed, from (9) we get

Ds
0u(xk) = C∗k(Uk, h, s) + ED

k (16)

with

ED
k = EC

k +Rk(u, h, s), (17)

and, as we see in Lemma 1, the absolut value of the error ED
k is O(h).

Lemma 1. Let ED
k be as in (17), with 1 ≤ k ≤ n, and let C ′s be the constant

involved in (10). Then

|ED
k | ≤ C ′sh2‖u‖3,∞ +

2− s
2Γ(3− s)

h‖u‖2,∞ (u ∈ C3[0, 1]). (18)

Proof. From the triangular inequality applied to (14), and taking into account that
the quantities ak, αk, dki and δki are non-negative, we have

|Rk(u, h, s)| ≤ h2−s

2Γ(3− s)

(
ak +

k∑
i=1

dki

)
‖u‖2,∞.
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Now, since ak +

k∑
i=1

dki = (2− s)k1−s and k1−s ≤ hs−1, it follows that

|Rk(u, h, s)| ≤ 2− s
2Γ(3− s)

h‖u‖2,∞. (19)

Finally, applying the triangular inequality to (17) and taking into account (10)
and (19), (18) follows easily. �

3. Numerical method

In this section we introduce the Second-Order Fractional Differential Equations
that we study and develop a numerical method to approximate their solutions which
is based on the numerical rules seen in the previous section.

3.1. Second-Order Fractional Differential Equations. Let Ds
0u be the Ca-

puto fractional derivative of u of order s defined by (2). We use D2 s
0 u to denote

the sequential or iterated derivative of order s of u, i.e.

D2 s
0 u = Ds

0 D
s
0u.

In general, D2 s
0 u is not equivalent to the derivative of order 2s of u, D2s

0 u.
Iterated derivatives play a fundamental role, for instance, in generalized Taylor’s
formula [27].

In this work, we consider SOFDEs of the following type

D2 s
0 u(x) = pDs

0u(x) + qu(x) + r(x) in (0, 1), (20)

where p, q are arbitrary constants and r is a bounded function on (0, 1); subject to
the initial value conditions

u(0) = β0, Ds
0u(0) = β1 (21)

with β0 and β1 arbitrary escalars.

A direct modification of the arguments that we will use can be established in
order to consider the interval (0, a), instead of (0, 1), with a an arbitrary positive
constant. As we have already clarified, the choice a = 1 responds only to keeping
our exposition as clear as possible.

3.2. Integro-Differential Equation. In this section we present an alternative
formulation of the Second-Order Fractional Differential Equation (20)-(21) as an
Integro-Differential Equation. We use this alternative formulation to guarantee
existence and uniqueness of a solution to the problem (20)-(21) and, in Section 3.3,
to establish a numerical method that allows us to approximate it.

After applying the integral operator Is0 to (20) and taking into account the
identity (4), together with the initial value conditions (21), we obtain

Ds
0u(x)− β1 = p(u(x)− β0) + qIs0u(x) + Is0r(x). (22)

Then, assuming the existence of a solution u of (20)-(21), it follows that u solves
the following Integro-Differential Equation{

Ds
0u(x) = pu(x) + qIs0u(x) + r̃(x) in (0, 1),

u(0) = β0,
(23)

with r̃(x) = Is0r(x) + β1 − β0p.



JFCA-2023/14(1) SECOND-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS 205

Moreover, as we claim, (23) is equivalent to (20)-(21). Indeed, taking into ac-
count the identity (3), after applying the differential operator Ds

0 to the first line
in (23) we get

D2 s
0 u(x) = pDs

0u(x) + qDs
0I

s
0u(x) +Ds

0r̃(x)

= pDs
0u(x) + qu(x) +Ds

0(Is0r(x) + β1 − β0p)

= pDs
0u(x) + qu(x) + r(x) +Ds

0(β1 − β0p).

Since β1 − β0p is a constant term it follows that Ds
0(β1 − β0p) = 0 and equation

(20) is obtained. On the other hand, the initial value condition on Ds
0u in (21)

follows from a direct evaluation in (23).
As we have just seen, problems (20)-(21) and (23) are equivalent in the sense

that the solution of one of them is also the solution of the other. However, up
to now there is no guarantee that any of these problems will actually support a
solution.

The existence and uniqueness of local solution can be easily obtained thanks to
known results. Indeed, observe that (23) can be written as follows

Ds
0u(x) = f(x, u) +

∫ x

0

K(x, t, u(t))dt, u(0) = β0

where

f(x, u) = p(u(x)− β0) + β1 and K(x, t, u(t)) =
1

Γ(s)
(qu(t) + r(t))(x− t)s−1.

Then, a direct application of Theorem 1 in [23] allows to conclude the existence of
a local solution of this Integro-Differential Equation and, therefore, a local solution
of the SOFDE (20)-(21). On the other hand, Theorem 3.1 in [24] is also directly
applicable where the function φ involved in the statement of such theorem can be
taken as φ(y) = |p|y with p as the same constant in the expression of f . Then,
invoking such a theorem, the local uniqueness of solution is guaranteed.

3.3. The numerical method. We use the rules Tk and C∗k introduced in Section 2
to present a numerical approximation scheme for the problem (23) (resp. (20)-(21)).
Indeed, suppose that the interval [0, 1] is subdivided into subintervals [xk, xk+1] of
equal width h = 1

n by using the nodes xk = kh, for k = 0, 1, . . . , n.
For any k ≥ 1, after evaluating the first line of (23) at xk, we obtain

Ds
0u(xk) = puk + qIs0u(xk) + r̃k (24)

where r̃k = r̃(xk). Then, thanks to (6) and (16) we get

C∗k(Uk, h, s) + ED
k = puk + q(Tk(Uk, h, s) + EI

k) + r̃k,

or, equivalently,

C∗k(Uk, h, s) = puk + qTk(Uk, h, s) + r̃k + qEI
k − ED

k . (25)

Collecting all these equations, we obtain the linear system

MU = B + E (26)
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where M is the lower triangular matrix

M =



m11 0 0 0 · · · 0
m21 m22 0 0 · · · 0
m31 m32 m33 0 · · · 0

...
...

...
...

. . . 0
mn1 mn2 mn3 mn4 · · · mnn

 (27)

with

m11 =
2− s

Γ(3− s)
− hs

(
p+

qhs

Γ(s+ 2)

)
, (28)

mii =
1

Γ(3− s)
− hs

(
p+

qhs

Γ(s+ 2)

)
, 2 ≤ i ≤ n, (29)

mi1 =
ai + di1 − di2

Γ(3− s)
− δi1qh

2s

Γ(s+ 2)
, 2 ≤ i ≤ n, (30)

mij =
dij − di j+1

Γ(3− s)
− δijqh

2s

Γ(s+ 2)
, 3 ≤ i ≤ n, 2 ≤ j ≤ i− 1, (31)

and

U =

u1

...
un

 , B =



r̃1h
s + β0

(
a1 + d11

Γ(3− s)
+

α1qh
2s

Γ(s+ 2)

)
r̃2h

s + β0

(
a2 + d21

Γ(3− s)
+

α2qh
2s

Γ(s+ 2)

)
...

r̃nh
s + β0

(
an + dn1

Γ(3− s)
+

αnqh
2s

Γ(s+ 2)

)


, E =

qE
I
1 − ED

1
...

qEI
n − ED

n

 .

Lemma 2. With the previous notations

‖E‖∞ ≤ h
(

2− s
2Γ(3− s)

+ |q|CIh

)
‖u‖2,∞ + C ′sh

2‖u‖3,∞ (u ∈ C3[0, 1]).

Proof. It is an immediate consequence of the triangular inequality, equation (7)
and Lemma 1. �

For a sufficiently regular function u, Lemma 2 implies that ‖E‖∞ → 0 as h→ 0.

This fact suggests that the solution Û =

û1

...
ûn

 of the linear system

MÛ = B (32)

seems to be a reasonable approximation of U (which satisfies (26)).

In concrete, the proposed method to approximate the solution of the discrete
system (26) associated to the Integro-Differential Equation (23) (resp. the SOFDE

(20)-(21)) consists to find the vector Û satisfying the linear algebraic system (32).
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3.4. On the approximation error ‖U − Û‖∞. As we have pointed out, the
proposed method becomes relevant when h is small. Observe that, under this
assumption, the following additional requirement can be regarded as virtual: there
exists a constant ξ0 such that

(H)
1

Γ(3− s)
− hs

(
p+

qhs

Γ(s+ 2)

)
≥ ξ0 > 0.

In the sequel, we assume that condition (H) is satisfied.
Since 0 < s < 1, we get

2− s
Γ(3− s)

=
1− s

Γ(3− s)
+

1

Γ(3− s)
≥ 1

Γ(3− s)
;

therefore,

2− s
Γ(3− s)

− hs
(
p+

qhs

Γ(s+ 2)

)
≥ ξ0 > 0.

Then, taking into account (28) and (29), we deduce that the lower triangular
matrix M introduced in (27) is non-singular.

On the other hand, substracting (32) to (26) we obtain

M(U − Û) = E

and then

U − Û = M−1E.

Therefore, the approximation error can be estimated in the usual way

‖U − Û‖∞ ≤ ‖M−1‖∞‖E‖∞. (33)

However, although the proposed method is consistent (c.f. Lemma 2), numerical
examples suggest that it is not stable in the usual sense since there does not seem
to be a uniform constant C verifying

‖M−1‖∞ ≤ C.

In consequence, it is not possible to obtain an explicit estimate of the approxi-
mation error; however, in the following section we illustrate the convergence of the
method with numerical examples even for less regular functions than required in
Lemma 2.

4. Numerical examples

In this section we present some examples with the aim to illustrate the applicabil-
ity and the convergence of the numerical method (32) to approximate the solution
of SOFDEs with constant coefficients. To this end, we have implemented in Octave

codes such method to the problems (34), (35), (36) and (37) listed below.

Example 1. Let 0 < s < 1. Consider the following Second-Order Fractional
Differential Equation{

D2 s
0 u(x) = Ds

0u(x) + u(x)− 1 in (0, 1),

u(0) = 1, Ds
0u(0) = 0.

(34)
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A simple inspection shows that u(x) = 1 is the exact solution of the problem
(34).

On the other hand, although the implementation of the method is immediate,
we point out that the parameters involved in this case are

p = 1 = q = β0 and β1 = 0,

while the function r̃ involved in the construction of matrix B is given by

r̃(x) = −1− xs

sΓ(s)
.

In Table 1 we compile some results obtained for the approximation error ‖Û −
U‖∞, where Û is the numerical solution given by (32) and U is the vector containig 1
in each entry, when s assumes the values 0.9, 0.5 and 0.1 respectively. We have also
compiled the values of ‖M−1‖∞ with the intention of illustrating that this quantity
seems not to be uniformly bounded (c.f. Section 3.4). Moreover, it is observed that
‖M−1‖∞ grows when n does and this growth seems to depend strongly on s. Despite
the increase in the value of ‖M−1‖∞, the approximation error is significantly small,
which is in accordance with (33) and Lemma 2.

n h
‖Û − U‖∞ ‖M−1‖∞

s = 0.9 s = 0.5 s = 0.1 s = 0.9 s = 0.5 s = 0.1

10 0.1 1.110 e-015 9.103 e-015 1.332 e-015 22.305 62.003 3.674
25 0.04 4.329 e-015 2.664 e-015 9.325 e-015 46.970 73.731 7.653
50 0.02 1.776 e-014 2.220 e-015 2.264 e-014 85.612 95.829 21.875
100 0.01 3.619 e-014 4.107 e-015 6.183 e-014 158.042 129.355 73.486

Table 1. Approximation errors for problem (34) and values of ‖M−1‖∞.

Example 2. Consider the following Second-Order Fractional Differential Equation{
D

2 1
2

0 u(x) = u(x) + 2x− x2 in (0, 1),

u(0) = 0, D
1
2
0 u(0) = 0.

(35)

In this case, we clearly have s = 1
2 . On the other hand, the exact solution of

(35) is u(x) = x2 and, although the implementation of the method (32) does not
present any difficulty, it seems pertinent to point out that the function r̃ is given
by

r̃(x) =
8x3/2

3
√
π

(
1− 2

5
x

)
while the rest of the parameters are

p = 0 = β0 = β1 and q = 1.

In Table 2 we compile the obtained results for the approximation error ‖Û−U‖∞,

where Û is the numerical solution given by (32) and U is the vector that contains
the evaluations of the function u at the corresponding nodes. We have also compiled
the values of ‖M−1‖∞ for the different values of n considered.

It is observed that as h = n−1 decreases, the approximation error also decreases;
in this sense our method seems asymptotically convergent. Moreover, although
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in this case ‖M−1‖∞ is not uniformly bounded either, the order of the values it
assumes for n ≥ 100 is considerably less than the order of h−1 = n. The fact that
‖M−1‖∞ does not increase significantly when h decreases allows to explain, taking
into account (33) and Lemma 2, that the order in the approximation error is similar
to the order of h.

n h ‖Û − U‖∞ ‖M−1‖∞
50 0.02 3.433 e-002 16.82
100 0.01 1.717 e-002 23.69
250 0.004 6.871 e-003 37.15
500 0.002 3.436 e-003 52.23
1000 0.001 1.718 e-003 73.50
2000 0.0005 8.591 e-004 103.55
5000 0.0002 3.436 e-004 163.12

Table 2. Approximation errors for problem (35) and values of ‖M−1‖∞.

In the previous examples, the solution function is regular enough to foresee,
thanks to the Lemma 2 and a not very significant growth of ‖M−1‖∞, that the
method will converge by virtue of what was seen in Section 3.4.

In what follows we present two examples in which the regularity of the solution
function is considerably less than what is required in the Lemma 2 and, however,
the proposed method is also asymptotically convergent.

Example 3. Let 0 < s < 1. Consider the following Second-Order Fractional
Differential Equation{

D2 s
0 u(x) = Ds

0u(x)− Γ(s+ 1) in (0, 1),

u(0) = 0, Ds
0u(0) = Γ(s+ 1).

(36)

A direct verification allows us to conclude that u(x) = xs is the exact solution
of the problem (36). In this case, the parameters involved in the construction of
matrices M and B in (32) are

p = 1, q = 0 = β0, β1 = Γ(s+ 1) and r̃(x) = −Γ(s+ 1)xs

sΓ(s)
.

In Table 3 we list the values of the error approximation ‖Û − U‖∞, where U is
the vector containig the evaluations of u at the nodes xi = i/n, i = 0, . . . , n for the

considered values of n, and Û is the obtained solution according to (32).
For each s considered in Table 3 it is observed that as h decreases, the approxi-

mation error ‖Û − U‖∞ also decreases; in this sense our method seems asymptoti-
cally convergent. On the other hand, note that the closer s is to 1, the better the
convergence speed. This fact, among other issues, may possibly be linked to an
improvement in the regularity of the solution function.

Although we have only tabulated results for values of s in the range [0.5, 1), a
similar behavior is observed when s is less than 0.5. However, convergence becomes
considerably slower in these cases, that is, a large number of nodes must be con-
sidered to obtain an acceptable error. Furthermore, the closer s is to 0, the slower
the convergence becomes.
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n h
‖Û − U‖∞

s = 0.95 s = 0.9 s = 0.8 s = 0.6 s = 0.5

10 0.1 2.617 e-002 5.455 e-002 1.219 e-001 3.459 e-001 5.590 e-001
50 0.02 7.412 e-003 1.616 e-002 3.985 e-002 1.413 e-001 2.564 e-001
100 0.01 4.254 e-003 9.460 e-003 2.436 e-002 9.595 e-002 1.846 e-001
250 0.004 2.012 e-003 4.593 e-003 1.255 e-002 5.706 e-002 1.191 e-001
500 0.002 1.130 e-003 2.632 e-003 7.533 e-003 3.830 e-002 8.524 e-002
1000 0.001 6.298 e-004 1.496 e-003 4.490 e-003 2.561 e-002 6.080 e-002

Table 3. Approximation errors for problem (36).

Example 4. Let 0 < s < 1. Consider the following Second-Order Fractional
Differential Equation{

D2s
0 u(x) = −Ds

0u(x) + 2u(x) in (0, 1)

u(0) = 1, Ds
0u(0) = 1.

(37)

The exact solution of this problem is u(x) = Es(x
s) where Es denotes the Mittag-

Leffler function

Es(z) =

∞∑
k=0

zk

Γ(sk + 1)

(details can be found in [27, Example 4]). By virtue of the exact solution, a
similar behavior to that described in Example 3 is expected.

In order to construct the matrices M and B involved in (32), we point out that
the parameters to consider in this case are

p = −1, q = 2, β0 = 1 = β1 and r̃(x) = 0.

We have used the MATLAB routine [29] for evaluating the Mittag-Leffler func-
tion at the nodes of the uniform mesh of step h = 1/n for the values of n and s listed
in Table 4 with accuracy 10−6, indeed, we use Ū to denote the vector containing
such values. That is, if U is the vector that contains the exact evaluations of u,
then ‖Ū − U‖∞ is O(10−6).

n h
‖Û − Ū‖∞

s = 0.95 s = 0.9 s = 0.8 s = 0.6 s = 0.5

10 0.1 7.332 e-002 7.051 e-002 6.309 e-002 5.134 e-002 9.168 e-002
50 0.02 1.365 e-002 1.207 e-002 7.263 e-003 2.614 e-002 6.630 e-002
100 0.01 6.615 e-003 5.526 e-003 4.915 e-003 2.157 e-002 5.667 e-002
250 0.004 2.529 e-003 1.907 e-003 2.785 e-003 1.614 e-002 4.148 e-002
500 0.002 1.218 e-003 8.264 e-004 1.765 e-003 1.204 e-002 3.138 e-002
1000 0.001 5.848 e-004 3.517 e-004 1.099 e-003 8.662 e-003 2.323 e-002

Table 4. Approximation errors for problem (37)

In Table 4 we compile the values of ‖Û−Ū‖∞ computed for the indicated choices

of n and s where Û is the obtained solution of (32).
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Now, from the triangular inequality we get

‖Û − U‖∞ ≤ ‖Û − Ū‖∞ + ‖Ū − U‖∞ . ‖Û − Ū‖∞ + 10−6

and, since ‖Û − Ū‖∞ > 10−6 in the studied cases (see Table 4), we conclude that

the approximation error ‖Û − U‖∞ is conditionated by ‖Û − Ū‖∞.

We can observe (c.f. Table 4) that as h decreases, so does the quantity ‖Û−Ū‖∞
and, therefore, the approximation error ‖Û−U‖∞ also decreases. This suggest that
the method is asymptotically convergent.

On the other hand, we have only tabulated results for values of s in the interval
[0.5, 1) since for values in the range (0, 0.5) a slow convergence is observed. Finally,
also in accordance with Example 3, a better performance is observed when the
value of s is close to 1.

5. Conclusions and final comments

In this work, we present a consistent numerical method to approximate the
solution of arbitrary Second-Order Fractional Differential Equations with constant
coefficients in the frame of the Caputo fractional derivative. Such approximation
scheme is reduced to solving a linear algebraic system which is extremely simple
since the associated matrix is a lower triangular one.

Numerical examples are explored in order to illustrate the applicability of the
method. An asymptotic convergence is observed in each case and, when the solution
function is enough regular and the method is close to being stable, the order in the
approximation error is the expected one according to (33) and Lemma 2. However,
the method seems to be asymptotically convergent even when the solution funcion is
less regular than required in Lemma 2. An improvement in the speed of convergence
is observed when the fractional order s is close to 1, which is in accordance with
the aforementioned.

Both the formulation of the numerical method that we did and the examples
that we explore are based on explicitly knowing the function r̃ introduced in (23),
or at least the values r̃k it assumes in each node xk (recall that the values r̃k are
used to define the matrix B involved in (32)). However, this may not occur, i.e.
it may happen that the exact values r̃k are not known. In this case, since r̃ is
defined as the sum of the constant term β1 − β0p and the term Is0r, the Modified
Trapezoid Rule can be used to approximate the latter and, therefore, to obtain an
approximation of r̃k for each k.

No additional complexity appears in the case that evaluations of r̃ should be
approximated; however, we prefer to present our explanation the way we did it in
order to keep it as clear as possible.

Finally, due the equivalence exhibited in Section 3.2 between the SOFDE (20)-
(21) and the Integro-Differential Equation (23), many of the numerical methods
available to approximate the latter can be applied to the former. As part of our
future work we propose to explore this line.
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