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A FAMILY OF EXTENSIONS AND GENERALIZATIONS OF

KÜMMER’S SECOND SUMMATION THEOREM

M. I. QURESHI, A. H. BHAT⋆ AND J. MAJID

Abstract. In recent years, various extensions of the popular and useful Kümmer’s

second summation theorem have been given by Rathie-Pogany and Rakha-
Rathie. The purpose of this paper is to acquire the extensions and generaliza-
tions of Kümmer’s second summation theorem in the form of

r+2Fr+1[a, b, {nr + ζr} ;
1 + a+ b−m

2
, {ζr} ;

1

2
],

with suitable convergence conditions. Their derivations are presented by
using the summation formula recorded by Prudnikov et. al. All the obtained
results are believed to be new, interesting and may be useful in the applicable

sciences.

1. Introduction

A natural generalization of the Gaussian hypergeometric series 2F1[α, β; γ; z] is
accomplished by introducing any arbitrary number of numerator and denominator
parameters. Thus, the resulting series

pFq

 (αp);
z

(βq);

 = pFq

 α1, α2, . . . , αp;
z

β1, β2, . . . , βq;

 =
∞∑

n=0

∏p
j=1(αj)n∏q
j=1(βj)n

zn

n!
, (1)

is known as the generalized hypergeometric series, or simply, the generalized hy-
pergeometric function. Here p and q are positive integers or zero and we assume
that the variable z, the numerator parameters α1, α2, . . . , αp and the denominator
parameters β1, β2, . . . , βq take on complex values, provided that

βj ̸= 0,−1,−2, . . . ; j = 1, 2, . . . , q. (2)

Supposing that none of the numerator and denominator parameters is zero or a
negative integer, we note that the pFq series defined by equation (1):

(i) converges for |z| < ∞, if p ≤ q,
(ii) converges for |z| < 1, if p = q + 1,
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(iii) diverges for all z, z ̸= 0, if p > q + 1,
(iv) converges absolutely for |z| = 1, if p = q + 1 and R(ω) > 0,
(v) converges conditionally for |z| = 1 (z ̸= 1), if p = q+1 and −1 < R(ω) ≤ 0,
(vi) diverges for |z| = 1, if p = q + 1 and R(ω) ≤ −1,

where, by convention, a product over an empty set is interpreted as 1 and

ω :=

q∑
j=1

βj −
p∑

j=1

αj (3)

= Sum of denominator parameters − Sum of numerator parameters.

Pochhammer symbol (α)p (α, p ∈ C) is defined, in terms of Gamma function Γ
(see, e.g., [21, p.2 and p.5]), see also [14, p.22, Eq.(1), p.32, Q.N.(8) and Q.N.(9)]
by

(α)p =
Γ(α+ p)

Γ(α)

(
α+ p ∈ C\Z−

0 , p ∈ C \ {0}; α ∈ C\Z−
0 , p = 0

)

=



1
(
p = 0 ; α ∈ C\Z−

0

)
,

α(α+ 1) · · · (α+ n− 1) (p = n ∈ N ; α ∈ C) ,
(−1)k n!
(n−k)! (p = k, α = −n ; n, k ∈ N0, 0 ≤ k ≤ n) ,

0 (p = k, α = −n ; n, k ∈ N0, k > n) ,
(−1)n

(1−α)n
(p = −n ; α ∈ C \ Z, n ∈ N) ,

(4)
it being understood that (0)0 = 1 (see, e.g., [14, 22]) and assumed tacitly that the
Gamma quotient exists.

Kümmer’s second summation theorem [10, p. 134] :

2F1

 a, b;
1
2

1+a+b
2 ;

 =

√
(π) Γ( 1+a+b

2 )

Γ( 1+a
2 )Γ( 1+b

2 )
, (5)

where 1+a+b
2 ∈ C\Z−

0 .
In the literature above summation theorem is also known as Gauss second summa-
tion theorem.

An interesting extension of Kümmer’s second summation theorem was given by
Rathie and Pogany [19] in the form

e−
x
2 2F2

 a, 1 + d;
x

2a+ 1, d;

 = 0F1

 − ;
x2

16
a+ 1

2 ;

−x(1− 2a
d )

2(2a+ 1)
0F1

 − ;
x2

16
a+ 3

2 ;

 .

(6)
An attractive extension of Kümmer’s second summation theorem was given by

Kim et al. [9] in the form

e−
x
2 1F1

 a ;
x

2a+ j;

 for j = 0,±1,±2, ...,±5. (7)
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Extension of Kümmer’s second summation theorem was given by Rakha et al.
[16] in the form

e−
x
2 2F2

 a, 2 + d;
x

2a+ 2, d;

 = 0F1

 − ;
x2

16
a+ 3

2 ;

+x( 2ad − 1
2 )

(a+ 1)
0F1

 − ;
x2

16
a+ 3

2 ;

+

+
cx2

2(2a+ 3)
0F1

 − ;
x2

16
a+ 5

2 ;

 , (8)

where d ̸= 0,−1,−2... and c is given by

c =

(
1

a+ 1

)(
1

2
− a

d

)
+

(
a

d(a+ 1)

)
.

Summation formula for Gauss’ series [11, p. 491, Entry(7.3.7.2) ]:

2F1

 α, β;
1
2

1+α+β−j
2 ;

 =
2β−1Γ( 1+α+β−j

2 )

Γ(β)

j∑
r=0


(

j
r

) Γ
(

β+r
2

)
Γ( 1+α+r−j

2 )

 , (9)

where β, 1+α+β−j
2 ∈ C\Z−

0 , j ∈ N0.

Motivated by the work given beautifully by Adunkudi [1], Andrews [2], Bailey[3],
Carlson[4] ,Choi[5, 6], Erdélyi et al. [7], Exton [8], Kim et al.[9], Prudnikov et
al.[11], Qureshi et al.[12, 13], Rakha-Rathie [15, 17], Ramesh [18], Slatter [20],
Srivastava[21, 22] and Vidunas [23], we mention some summation theorems for
ordinary generalized hypergeometric series having the argument (12 ). Their deriva-
tions are given by using series rearrangement technique and summation formula
recorded by Prudnikov et. al.

Any values of numerator and denominator parameters in Sections 2 leading to
the results which do not make sense are tacitly excluded. It is very interesting to
mention here that we have verified the summation theorems usingMATHEMATICA
software, a general system of doing mathematics by computer.

2. MAIN SUMMATION THEOREMS

Theorem 1. The following summation theorem holds true:

6F5

 a, b, c+ 1, d+ 1, g + 1, h+ 1;
1
2

1+a+b−m
2 , c, d, g, h;

 =
2b−1Γ( 1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

)
×

×

{
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +
a(1 + cdg + cdh+ cgh+ dgh+ cd+ cg + ch+ dg + dh+ gh+

cdgh

+c+ g + h+ d)Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
(7 + cd+ cg + ch+ dg + dh+ gh+ 3c+ 3d+ 3g + 3h)

cdgh
×

×
a(a+ 1)Γ

(
b+2+r

2

)
Γ
(
3+a+r−m

2

) +
(6 + c+ d+ g + h)a(a+ 1)(a+ 2)

cdgh

Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

)+
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+
a(a+ 1)(a+ 2)(a+ 3)

cdgh

Γ
(
b+4+r

2

)
Γ
(
5+a+r−m

2

)} , (10)

where a, b, c, d, g, h, 1+a+b−m
2 ∈ C\Z−

0 , and m ∈ N0.

Proof: Using the definition of Pochhammer symbol

(α)p =
Γ(α+ p)

Γ(α)
,

we can see that

(c+ 1)r(d+ 1)r(g + 1)r(h+ 1)r
(c)r(d)r(g)r(h)r

=

×
[
1 +

(1 + cdg + cdh+ cgh+ dgh+ cd+ cg + ch+ dg + dh+ gh+ c+ d+ g + h)r

cdgh
+

+
(7 + cd+ cg + ch+ dg + dh+ gh+ 3c+ 3d+ 3g + 3h)r(r − 1)

cdgh
+

+
(6 + c+ d+ g + h)r(r − 1)(r − 2)

cdgh
+

r(r − 1)(r − 2)(r − 3)

cdgh

]
, (11)

Now, in order to establish our Theorem 1, we expand the left hand side in the series
form

6F5

 a, b, c+ 1, d+ 1, g + 1, h+ 1;
1
2

1+a+b−m
2 , c, d, g, h;

 =

= 2F1

 a, b ;
1
2

1+a+b−m
2 ;

+(1 + cdg + cdh+ cgh+ dgh+ cd+ cg + ch+ dg + dh+

cd

+gh+ c+ d+ g + h)

gh

∞∑
r=1

(a)r(b)r(
1
2 )

r

( 1+a+b−m
2 )r(r − 1)!

+
(7 + cd+ cg + ch+ dg + dh+ gh+

cd

+3c+ 3d+ 3g + 3h)

gh

∞∑
r=2

(a)r(b)r(
1
2 )

r

( 1+a+b−m
2 )r(r − 2)!

+
(6 + c+ d+ g + h)

cdgh
×

×
∞∑
r=3

(a)r(b)r(
1
2 )

r

( 1+a+b−m
2 )r(r − 3)!

+
1

cdgh

∞∑
r=4

(a)r(b)r(
1
2 )

r

( 1+a+b−m
2 )r(r − 4)!

. (12)

Replacing r by r + 1 in second term, r by r + 2 in third term, r by r + 3 in fourth
term and r by r + 4 in fifth term on the right hand side of the equation (12), we
come to

6F5

 a, b, c+ 1, d+ 1, g + 1, h+ 1;
1
2

1+a+b−m
2 , c, d, g, h;


= 2F1

 a, b ;
1
2

1+a+b−m
2 ;

+ab (1 + cdg + cdh+ cgh+ dgh+ cd+ cg + ch+ dg + dh+

cdgh

+gh+ c+ d+ g + h)

(1 + a+ b−m)
2F1

 a+ 1, b+ 1 ;
1
2

3+a+b−m
2 ;

+(7 + cd+ cg + ch+ dg + dh+ gh+

cdgh
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+3c+ 3d+ 3g + 3h)a(a+ 1)b(b+ 1)

(1 + a+ b−m)(3 + a+ b−m)
2F1

 a+ 2, b+ 2 ;
1
2

5+a+b−m
2 ;

+ (6 + c+ d+ g + h)

cdgh(1 + a+ b−m)
×

× a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

(3 + a+ b−m)(5 + a+ b−m)
2F1

 a+ 3, b+ 3 ;
1
2

7+a+b−m
2 ;

+a(a+ 1)(a+ 2)(a+ 3)

cdgh(1 + a+ b−m)
×

× b(b+ 1)(b+ 2)(b+ 3)

(3 + a+ b−m)(5 + a+ b−m)(7 + a+ b−m)
2F1

 a+ 4, b+ 4 ;
1
2

9+a+b−m
2 ;

 .

(13)
Finally using summation formula recorded by Prudnikov et al. (9), on the right
hand side of the equation (13), we arrive at the right hand side of Theorem 1.

Theorem 2. The following summation theorem holds true:

5F4

 a, b, c+ 1, d+ 1, g + 1;
1
2

1+a+b−m
2 , c, d, g;

 =
2b−1Γ(1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +

+
a(1 + c+ d+ g + cd+ cg + dg)

cdg

Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
a(a+ 1)(c+ d+ g + 3)

cdg
×

×
Γ
(
b+2+r

2

)
Γ
(
3+a+r−m

2

) +
a(a+ 1)(a+ 2)

cdg

Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

)} , (14)

where a, b, c, d, g, 1+a+b−m
2 ∈ C\Z−

0 , m ∈ N0.

Proof: In order to derive the Theorem 2, we shall use the following:

(c+ 1)r(d+ 1)r(g + 1)r
(c)r(d)r(g)r

=

=

[
1 +

(1 + c+ d+ g + cd+ cg + dg)r

cdg
+

(c+ d+ g + 3)r(r − 1)

cdg
+

r(r − 1)(r − 2)

cdg

]
.

(15)
After some simplification and using the summation formula recorded by Prudnikov
et al. (9), we will get the right hand side of Theorem 2.

Theorem 3. The following summation theorem holds true:

5F4

 a, b, c+ 1, d+ 1, g + 2;
1
2

1+a+b−m
2 , c, d, g;

 =
2b−1Γ(1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +

+
a(dg + cg + 2cd+ 2c+ 2d+ g + 2)

cdg

Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
(10 + cd+ 2dg + 2cg+

cdg

+g2 + 4c+ 4d+ 7g)a(a+ 1)

(g + 1)

Γ
(
b+2+r

2

)
Γ
(
3+a+r−m

2

) +
(7 + c+ d+ 2g)a(a+ 1)(a+ 2)

cdg(g + 1)
×

×
Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

) +
a(a+ 1)(a+ 2)(a+ 3)

cdg(g + 1)

Γ
(
b+4+r

2

)
Γ
(
5+a+r−m

2

)} , (16)
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where a, b, c, d, g, 1+a+b−m
2 ∈ C\Z−

0 , m ∈ N0.

Proof : The proof would flow along the lines of that of Theorem 2, with the aid
of result (9). So we prefer to omit the details.

Theorem 4. The following summation theorem holds true:

4F3

 a, b, c+ 1, d+ 1;
1
2

1+a+b−m
2 , c, d;

 =
2b−1Γ( 1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +

+
a(c+ d+ 1)

cd

Γ
(
b+r+1

2

)
Γ
(
2+a+r−m

2

) +
a(a+ 1)

cd

Γ
(
b+r+2

2

)
Γ
(
3+a+r−m

2

)} , (17)

where a, b, c, d, 1+a+b−m
2 ∈ C\Z−

0 and m ∈ N0.

Proof: The proof would run in parallel with that of Theorem 1, with the aid of
result (9). The details are omitted.

Theorem 5. The following summation theorem holds true:

4F3

 a, b, c+ 1, d+ 2;
1
2

1+a+b−m
2 , c, d;

 =
2b−1Γ( 1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +
a(2c+ d+ 2)

cd
×

×
Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
a(a+ 1)(c+ 2d+ 4)

cd(d+ 1)

Γ
(
b+2+r

2

)
Γ
(
3+a+r−m

2

) +
a(a+ 1)(a+ 2)

cd(d+ 1)

Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

)} ,

(18)
where a, b, c, d, 1+a+b−m

2 ∈ C\Z−
0 , m ∈ N0.

Proof: In order to acquire the Theorem 5, we shall use the following:

(c+ 1)r(d+ 2)r
(c)r(d)r

=

(
1 +

(2c+ d+ 2)r

cd
+

(c+ 2d+ 4)r(r − 1)

cd(d+ 1)
+

r(r − 1)(r − 2)

cd(d+ 1)

)
(19)

After further simplification and using the summation formula recorded by Prud-
nikov et al. (9), we will arrive at the right hand side of Theorem 5. We omit
specifics.
Theorem 6. The following summation theorem holds true:

4F3

 a, b, c+ 2, d+ 2 ;
1
2

1+a+b−m
2 , c, d;

 =
2b−1Γ( 1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +

+
a(4 + 2c+ 2d)

cd

Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
(14 + c2 + d2 + 4cd+ 9c+ 9d)a(a+ 1)

cd(c+ 1)(d+ 1)

Γ
(
b+2+r

2

)
Γ
(
3+a+r−m

2

)+
+
(8 + 2c+ 2d)a(a+ 1)(a+ 2)

cd(c+ 1)(d+ 1)

Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

) +
a(a+ 1)(a+ 2)(a+ 3)

cd(c+ 1)(d+ 1)

Γ
(
b+4+r

2

)
Γ
(
5+a+r−m

2

)} ,

(20)
where a, b, c, d, 1+a+b−m

2 ∈ C\Z−
0 , and m ∈ N0.
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Proof: The proof would be accomplished by following the lines of that of The-
orem 5, with the aid of result (9). The involved details are omitted.

Theorem 7. The following summation theorem holds true:

4F3

 a, b, c+ 1, d+ 3 ;
1
2

1+a+b−m
2 , c, d;

 =
2b−1Γ( 1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +

+
a(3 + 3c+ d)

cd

Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
(9 + 3c+ 3d)a(a+ 1)

cd(d+ 1)

Γ
(
b+2+r

2

)
Γ
(
3+a+r−m

2

)+
+
(9 + c+ 3d)a(a+ 1)(a+ 2)

cd(d+ 1)(d+ 2)

Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

) +
a(a+ 1)(a+ 2)(a+ 3)

cd(d+ 1)(d+ 2)

Γ
(
b+4+r

2

)
Γ
(
5+a+r−m

2

)} ,

(21)
where a, b, c, d, 1+a+b−m

2 ∈ C\Z−
0 , and m ∈ N0.

Proof: In order to establish the Theorem 7, we shall use the following:

(c+ 1)r(d+ 3)r
(c)r(d)r

=

[
1 +

(3 + 3c+ d)r

cd
+

(9 + 3c+ 3d)r(r − 1)

cd(d+ 1)
+

+
(9 + c+ 3d)r(r − 1)(r − 2)

cd(d+ 1)(d+ 2)
+

r(r − 1)(r − 2)(r − 3)

cd(d+ 1)(d+ 2)

]
. (22)

After straight forword calculation and using the summation formula recorded by
Prudnikov et al. (9), we will arrive at the right hand side of Theorem 7. The
involved details are omitted.
Theorem 8. The following summation theorem holds true:

3F2

 a, b, c+ 4;
1
2

1+a+b−m
2 , c;

 =
2b−1Γ( 1+a+b−m

2 )

Γ(b)

m∑
r=0

(
m
r

){
Γ
(
b+r
2

)
Γ
(
1+a+r−m

2

) +

+
4a

c

Γ
(
b+1+r

2

)
Γ
(
2+a+r−m

2

) +
6a(a+ 1)

c(c+ 1)

Γ
(
b+2+r

2

)
Γ
(
3+a+r−m

2

) +
4a(a+ 1)(a+ 2)

c(c+ 1)(c+ 2)

Γ
(
b+3+r

2

)
Γ
(
4+a+r−m

2

)+
+
a(a+ 1)(a+ 2)(a+ 3)

c(c+ 1)(c+ 2)(c+ 3)

Γ
(
b+4+r

2

)
Γ
(
5+a+r−m

2

)} , (23)

where a, b, c, 1+a+b−m
2 ∈ C\Z−

0 and m ∈ N0.
Proof: In order to derive the Theorem 8, we will use the following:

(c+ 4)r
(c)r

= 1 +
4r

c
+

6r(r − 1)

c(c+ 1)
+

4r(r − 1)(r − 2)

c(c+ 1)(c+ 2)
+

r(r − 1)(r − 2)(r − 3)

c(c+ 1)(c+ 2)(c+ 3)
. (24)

After further simplification and using the summation formula recorded by Prud-
nikov et al. (9), we will arrive at the right hand side of Theorem 8. We omit
specifics.
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3. CONCLUSION

In this paper, we have derived some extensions and generalizations of Kümmer’s
second summation theorem (5) for 6F5[

1
2 ], 5F4[

1
2 ], 4F3[

1
2 ] and 3F2[

1
2 ], where cer-

tain numerator and denominator parameters differ by a positive integer, as claimed
in theorem 1 to 8. We conclude this paper with the note that some other summa-
tion theorems can be obtained in a same way. Besides the derived result are quite
significant, we believe that these would be able to find wide range of applications
and advantages in obtaning the exact mathematical expressions in place of already
approximate mathematical expressions scattered in the fields of Applied Mathe-
matics and Engineering Sciences to improve the accuracy.

Conflicts of interests: The authors declare that there are no conflicts of in-
terests.
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