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HANKEL DETERMINANT PROBLEMS FOR A SUBCLASS OF

ANALYTIC FUNCTIONS ASSOCIATED WITH LEMNISCATE OF

BERNOULLI

GAGANDEEP SINGH, GURCHARANJIT SINGH

Abstract. In this paper, we establish the upper bounds of third and fourth
Hankel determinants for a subclass of analytic functions in the open unit disc
E = {z ∈ C : |z| < 1}, subordinated to Lemniscate of Bernoulli. Also we ex-
tend this investigation for two-fold and three-fold symmetric functions. Some

earlier known results will follow as particular cases.

1. Introduction

Let f and g be two analytic functions in the open unit disc E = {z ∈ C : |z| < 1}
(C is the complex plane). We say that f is subordinate to g (denoted as f ≺ g)
if there exists a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E such that
f(z) = g(w(z)). Further, if g is univalent in E, then the subordination leads to
f(0) = g(0) and f(E) ⊂ g(E).

Let A denote the class of analytic functions of the form f(z) = z +
∑∞

k=2 akz
k,

defined in E and normalized by the conditions f(0) = f ′(0) − 1 = 0. By S, we
denote the subclass of A which consists of univalent functions in E.

Firstly, we shall discuss some fundamental classes of analytic functions which
are very useful for better understanding of the main content.

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0, z ∈ E

}
, the class of starlike functions.

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0, z ∈ E

}
, the class of convex functions.
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Reade [28] introduced the class CS∗ of close-to-star functions which is defined

as CS∗ =

{
f : f ∈ A, Re

(
f(z)

g(z)

)
> 0, g ∈ S∗, z ∈ E

}
. Further for g(z) = z, Mac-

Gregor [20] studied the following subclass of close-to-star functions:

R
′
=

{
f : f ∈ A, Re

(
f(z)

z

)
> 0, z ∈ E

}
.

MacGregor [19] established a very useful class R of bounded turning functions
which is defined as

R = {f : f ∈ A, Re(f ′(z)) > 0, z ∈ E} .
Later on, Murugusundramurthi and Magesh [22] studied the following class:

R(α) =

{
f : f ∈ A, Re

(
(1− α)

f(z)

z
+ αf ′(z)

)
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

Particularly, R(1) ≡ R and R(0) ≡ R′
.

Sokol and Stakiewicz [34] introduced the class S∗
L, consisting of functions f ∈ A

such that zf ′(z)
f(z) lies in the region bounded by right-half of the Bernoulli’s lemniscate

given by |w2 − 1| < 1. The class S∗
L can be expressed as

S∗
L =

{
f : f ∈ A,

∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1, z ∈ E

}
,

and in terms of subordination the class S∗
L, can represented as

S∗
L =

{
f : f ∈ A,

zf ′(z)

f(z)
≺

√
1 + z, z ∈ E

}
.

Recently, Srivastava et al. [35], Rao et al. [26], Arif et al. [4] and Ullah et al. [36]
studied various subclasses of analytic functions associated with right half of the
lemniscate of Bernoulli (x2 + y2)2 − 2(x2 − y2) = 0. Getting motivated by these
works, now we define the following class of analytic functions by subordinating to√
1 + z.

Definition 1.1 A function f ∈ A is said to be in the class Rα
L (0 ≤ α ≤ 1) if it

satisfies the condition

(1− α)
f(z)

z
+ αf ′(z) ≺

√
1 + z.

We have the following observations:
(i) R0

L ≡ R′

L.
(ii) R1

L ≡ RL.

For q ≥ 1 and n ≥ 1, Pommerenke [24] introduced the qth Hankel determinant
as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
For specific values of q and n, the Hankel determinant Hq(n) reduces to the

following functionals:
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(i) For q = 2 and n = 1, it redues to H2(1) = a3 − a22, which is the well known
Fekete-Szegö functional.
(ii) For q = 2 and n = 2, the Hankel determinant takes the form of H2(2) =
a2a4 − a23, which is known as Hankel determinant of second order.
(iii) For q = 3 and n = 1, the Hankel determinant reduces to H3(1), which is the
Hankel determinant of third order.
(iv) For q = 4 and n = 1, Hq(n) reduces to H4(1), which is the Hankel determinant
of fourth order.

Ma [17] introduced the functional Jn,m(f) = anam − am+n−1, n,m ∈ N − {1},
which is known as generalized Zalcman functional. The functional J2,3(f) =
a2a3 − a4 is a specific case of the generalized Zalcman functional. The upper
bound for the functional J2,3(f) over different subclasses of analytic functions was
computed by various authors. It is very useful in establishing the bounds for the
third Hankel determinant.

On expanding, the third Hankel determinant can be expressed as

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and after applying the triangle inequality, it yields

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1)

Also the expansion of fourth Hankel determinant can be expressed as
H4(1) = a7H3(1)− 2a4a6(a2a4 − a23)− 2a5a6(a2a3 − a4)− a26(a3 − a22)

+ a25(a2a4 − a23) + a25(a2a4 + 2a23)− a35 + a44 − 3a3a
2
4a5. (2)

Extensive work has been done on the estimation of second Hankel determinant
by various authors including Noor [23], Ehrenborg [11], Layman [14], Singh [30],
Mehrok and Singh [21] and Janteng et al. [13]. The estimation of third Hankel
determinant is little bit complicated. Babalola [5] was the first researcher who suc-
cessfully obtained the upper bound of third Hankel determinant for the classes of
starlike functions, convex functions and the class of functions with bounded bound-
ary rotation. Further a few researchers including Shanmugam et al. [29], Bucur et
al. [7], Altinkaya and Yalcin [1], Singh and Singh [31] have been actively engaged
in the study of third Hankel determinant for various subclasses of analytic func-
tions. Now a days, the study of fourth Hankel determinant for various subclasses
of analytic functions, is an active topic of research. A few authors including Arif
et al. [3], Singh et al. [32, 33] and Zhang and Tang [37] established the bounds of
fourth Hankel determinant for certain subclasses of A.

This paper is concerned with the establishment of the upper bounds of the third
and fourth Hankel determinants for the class Rα

L. Also various known results follow
as particular cases.

Let P denote the class of analytic functions p of the form

p(z) = 1 +
∞∑
k=1

pkz
k,
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whose real parts are positive in E.

In order to prove our main results, the following lemmas have been used:
Lemma 1 If p ∈ P, then

|pk| ≤ 2, k ∈ N.
The above well known result is due to Carathéodory [8, 9].
Further Hayami and Owa [12], established the following result:

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1.

Also Ma and Minda [18] proved that if ρ is any complex number, then

|p2 − ρp21| ≤ 2max{1, |2ρ− 1|}.

Lemma 2 [2] Let p ∈ P, then

|Jp31 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [25] that

|p31 − 2p1p2 + p3| ≤ 2.

Lemma 3 [15, 16] If p ∈ P, then

2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z,

for |x| ≤ 1 and |z| ≤ 1.

Lemma 4 [27] Let m,n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1
and

8r(1−r)
[
(mn− 2l)2 + (m(r +m)− n)2

]
+m(1−m)(n−2rm)2 ≤ 4m2(1−m)2r(1−r).

If p ∈ P, then ∣∣∣∣lp41 + rp22 + 2mp1p3 −
3

2
np21p2 − p4

∣∣∣∣ ≤ 2.

2. Results for the class Rα
L

Theorem 2.1 If f ∈ Rα
L, then

|a2| ≤
1

2(1 + α)
, (3)

|a3| ≤
1

2(1 + 2α)
, (4)

|a4| ≤
1

2(1 + 3α)
, (5)

and

|a5| ≤
1

2(1 + 4α)
. (6)

Proof. Since f ∈ Rα
L, by the principle of subordination, we have

(1− α)
f(z)

z
+ αf ′(z) =

√
1 + w(z). (7)
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Define p(z) =
1 + w(z)

1− w(z)
= 1+p1z+p2z

2+p3z
3+ ..., which implies w(z) =

p(z)− 1

p(z) + 1
.

On expanding, we have

(1−α)
f(z)

z
+αf ′(z) = 1+(1+α)a2z+(1+2α)a3z

2+(1+3α)a4z
3+(1+4α)a5z

4+...

(8)
Also√

1 + w(z) = 1 +
1

4
p1z +

(
p2
4

− 5p21
32

)
z2

+

(
13p31
128

− 5p1p2
16

+
p3
4

)
z3 +

(
−141p41

2048
+

39p21p2
128

− 5p3p1
16

− 5p22
32

+
p4
4

)
z4 + ...

(9)
Using (8) and (9), (7) yields
1 + (1 + α)a2z + (1 + 2α)a3z

2 + (1 + 3α)a4z
3 + (1 + 4α)a5z

4 + ...

= 1+
1

4
p1z+

(
p2
4

− 5p21
32

)
z2+

(
13p31
128

− 5p1p2
16

+
p3
4

)
z3+

(
−141p41

2048
+

39p21p2
128

− 5p3p1
16

− 5p22
32

+
p4
4

)
z4+...

(10)
Equating the coefficients of z, z2, z3 and z4 in (10) and on simplification, we obtain

a2 =
1

4(1 + α)
p1, (11)

a3 =
1

4(1 + 2α)

[
p2 −

5p21
8

]
, (12)

a4 =
1

128(1 + 3α)

[
13p31 − 40p1p2 + 32p3

]
, (13)

and

a5 =
1

4(1 + 4α)

[
141p41
512

+
320p22
512

+
640p3p1
512

− 624p21p2
512

− p4

]
. (14)

Using first inequality of Lemma 1 in (11), the result (3) is obvious.
From (12), we have

|a3| =
1

4(1 + 2α)

∣∣∣∣p2 − 5

8
p21

∣∣∣∣ . (15)

Using third inequality of Lemma 1 in (15), the result (4) can be easily obtained.
(13) can be expressed as

|a4| =
1

128(1 + 3α)

∣∣13p31 − 40p1p2 + 32p3
∣∣ . (16)

On applying Lemma 2 in (16), the result (5) is obvious.
Further, on using Lemma 4 in (14), the result (6) is obvious.

On putting α = 0, Theorem 2.1 yields the following result:
Corollary 2.1 If f ∈ R′

L, then

|a2| ≤
1

2
, |a3| ≤

1

2
, |a4| ≤

1

2
, |a5| ≤

1

2
.

For α = 1, Theorem 2.1 gives the following result due to Ullah et al. [36]:
Corollary 2.2 If f ∈ RL, then

|a2| ≤
1

4
, |a3| ≤

1

6
, |a4| ≤

1

8
, |a5| ≤

1

10
.
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Conjecture If f ∈ Rα
L, then

|an| ≤
1

2(1 + (n− 1)α)
, n ≥ 2.

Theorem 2.2 If f ∈ Rα
L and µ is any complex number, then

|a3 − a22| ≤
1

2(1 + 2α)
. (17)

Proof. From (11) and (12), we obtain

|a3 − a22| =
1

4(1 + 2α)

∣∣∣∣p2 − 5(1 + α)2 + 2(1 + 2α)

8(1 + α)2
p21

∣∣∣∣ . (18)

Using third inequality of Lemma 1, (18) takes the form

|a3 − a22| ≤
1

2(1 + 2α)
max

{
1,

(1 + α)2 + 2(1 + 2α)

4(1 + α)2

}
. (19)

Substituting for α = 0, Theorem 2.2 yields the following result:
Corollary 2.3 If f ∈ R′

L, then

|a3 − a22| ≤
1

2
.

Putting α = 1, Theorem 2.2 yields the following result:
Corollary 2.4 If f ∈ RL, then

|a3 − a22| ≤
1

6
.

Theorem 2.3 If f ∈ Rα
L, then

|a2a3 − a4| ≤
1

2(1 + 3α)
. (20)

Proof. Using (11), (12), (13) and after simplification, we have
|a2a3 − a4|

=
1

128(1 + α)(1 + 2α)(1 + 3α)

∣∣(18 + 54α+ 26α2)p31 − (48 + 144α+ 80α2)p1p2 + 32(1 + α)(1 + 2α)p3
∣∣ .

(21)
On applying Lemma 2 in (21), it yields (20).

For α = 0, the following result is a consequence of Theorem 2.3:
Corollary 2.6 If f ∈ R′

L, then

|a2a3 − a4| ≤
1

2
.

On putting α = 1 in Theorem 2.3, we can obtain the following result:
Corollary 2.7 If f ∈ RL, then

|a2a3 − a4| ≤
1

8
.

Theorem 2.4 If f ∈ Rα
L, then

|a2a4 − a23| ≤
1

4(1 + 2α)2
. (22)
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Proof. Using (11), (12) and (13), we have
|a2a4 − a23|

=
1

1024(1 + α)(1 + 2α)2(1 + 3α)

∣∣64(1 + 2α)2p1p3 − 80α2p21p2 + (1 + 4α+ 29α2)p41 − 64(1 + α)(1 + 3α)p22
∣∣ .

Substituting for p2 and p3 from Lemma 3 and letting p1 = p, we get

|a2a4 − a23| =
1

1024(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣(45α2 + 4α+ 1)p4 − 8α2p2(4− p2)x

−16(1+2α)2p2(4−p2)x2−16(1+α)(1+3α)(4−p2)2x2+32(1+2α)2p(4−p2)(1−|x|2)z
∣∣∣∣.

Since |p| = |p1| ≤ 2, we may assume that p ∈ [0, 2]. By using triangle inequality
and |z| ≤ 1 with |x| = t ∈ [0, 1], we obtain

|a2a4 − a23| ≤
1

1024(1 + α)(1 + 2α)2(1 + 3α)

[
(45α2 + 4α+ 1)p4 + 8α2p2(4− p2)x

+16(1+2α)2p2(4−p2)t2+16(1+α)(1+3α)(4−p2)2t2+32(1+2α)2p(4−p2)−32(1+2α)2p(4−p2)t2
]
= F (p, t).

∂F

∂t
=

1

1024(1 + α)(1 + 2α)2(1 + 3α)

[
8α2p2(4−p2)+32(4−p2)(2−p)t{(6−p)α2+8α+2}

]
≥ 0,

and so F (p, t) is an increasing function of t.

Therefore, max{F (p, t)} = F (p, 1) =
1

1024(1 + α)(1 + 2α)2(1 + 3α)

[
(45α2 + 4α +

1)p4

+8α2p2(4− p2) + 16(1 + 2α)2p2(4− p2) + 16(1 + α)(1 + 3α)(4− p2)2
]
= H(p).

H ′(p) = 0 gives p = 0. Also H ′′(p) < 0 for p = 0.

This implies max{H(p)} = H(0) =
1

4(1 + 2α)2
, which proves (22).

Putting α = 0, Theorem 2.4 gives the following result:
Corollary 2.8 If f ∈ R′

L, then

|a2a4 − a23| ≤
1

4
.

Substituting for α = 1 in Theorem 2.4, the following result is obvious:
Corollary 2.9 If f ∈ RL, then

|a2a4 − a23| ≤
1

36
.

Theorem 2.5 If f ∈ Rα
L, then

|H3(1)| ≤
1

4(1 + 2α)

[
1

2(1 + 2α)2
+

1

1 + 4α

]
+

1

4(1 + 3α)2
. (23)

Proof. By using (4), (5), (6), (20), (22) and Theorem 2.2 in (1), the result (23)
can be easily obtained.

For α = 0, Theorem 2.5 yields the following result:
Corollary 2.10 If f ∈ R′

L, then

|H3(1)| ≤
5

8
.
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For α = 1, Theorem 2.5 yields the following result:
Corollary 2.11 If f ∈ RL, then

|H3(1)| ≤
319

8640
.

Theorem 2.6 If f ∈ Rα
L, then

|H4(1)| ≤ 1
(1+2α)2(1+4α)

[
1+8α+13α2

4(1+2α)(1+4α)(1+6α) +
1+4α+2α2

4(1+4α)2 + 3+12α+8α2

8(1+3α)(1+5α)

]
+

1

16(1 + 3α)2(1 + 6α)

[
3 + 18α+ 18α2

(1 + 3α)2
+

5 + 30α+ 18α2

(1 + 2α)(1 + 4α)

]
+

1

8(1 + 2α)(1 + 5α)2
.

Proof. We have

|a2a4 + 2a23| ≤ |a2a4 − a23|+ 3|a3|2.

Applying the triangle inequality in (2) and using the above inequality along with
Theorem 2.1, Theorem 2.2, Theorem 2.3, Theorem 2.4 and Theorem 2.5, the proof
of the Theorem 2.6 is obvious.

For α = 0, Theorem 2.6 yields the following result:
Corollary 2.12 If f ∈ R′

L, then

|H4(1)| ≤
3

2
.

For α = 1, Theorem 2.6 yields the following result:
Corollary 2.13 If f ∈ RL, then

|H4(1)| ≤ 0.0101.

3. Bounds of |H3(1)| for Two-fold and Three-fold symmetric
functions

A function f is said to be n-fold symmetric if is satisfy the following condition:

f(ξz) = ξf(z)

where ξ = e
2πi
n and z ∈ E.

By S(n), we denote the set of all n-fold symmetric functions which belong to the
class S.
The n-fold univalent function have the following Taylor-Maclaurin series:

f(z) = z +
∞∑
k=1

ank+1z
nk+1. (24)

An analytic function f of the form (24) belongs to the family Rα(n)
L if and only if

(1− α)
f(z)

z
+ αf ′(z) =

√
2p(z)

p(z) + 1
, p ∈ P(n),

where

Pn =

{
p ∈ P : p(z) = 1 +

∞∑
k=1

pnkz
nk, z ∈ E

}
. (25)
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Theorem 3.1 If f ∈ Rα(2)
L , then

|H3(1)| ≤
1

4(1 + 2α)(1 + 4α)
. (26)

Proof. If f ∈ Rα(2)
L , so there exists a function p ∈ P(2) such that

(1− α)
f(z)

z
+ αf ′(z) =

√
2p(z)

p(z) + 1
. (27)

Using (24) and (25) for n = 2, (27) yields

a3 =
1

4(1 + 2α)
p2, (28)

a5 =
1

4(1 + 4α)

(
p4 −

5

8
p22

)
. (29)

Also

H3(1) = a3a5 − a33. (30)

Using (28) and (29) in (30), it yields

H3(1) =
1

16(1 + 2α)(1 + 4α)
p2

[
p4 −

5(1 + 2α)2 + 2(1 + 4α)

8(1 + 2α)2
p22

]
. (31)

On applying triangle inequality in (31) and using second inequality of Lemma 1,
we can easily get the result (26).

Putting α = 0, the following result can be easily obtained from Theorem 3.1:

Corollary 3.1 If f ∈ R
′(2)
L , then

|H3(1)| ≤
1

4
.

For α = 1, Theorem 3.1 agrees with the following result:

Corollary 3.2 If f ∈ R(2)
L , then

|H3(1)| ≤
1

60
.

Theorem 3.2 If f ∈ Rα(3)
L , then

|H3(1)| ≤
1

4(1 + 3α)2
. (32)

Proof. If f ∈ Rα(3)
L , so there exists a function p ∈ P(3) such that

(1− α)
f(z)

z
+ αf ′(z) =

√
2p(z)

p(z) + 1
. (33)

Using (24) and (25) for n = 3, (33) gives

a4 =
1

4(1 + 3α)
p3. (34)

Also

H3(1) = −a24. (35)
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Using (34) in (35), it yields

H3(1) = − 1

16(1 + 3α)2
p23. (36)

On applying triangle inequality and using first inequality of Lemma 1, (32) can be
easily obtained.

For α = 0, Theorem 3.2 yields the following result:

Corollary 3.3 If f ∈ R
′(3)
L , then

|H3(1)| ≤
1

4
.

For α = 1, Theorem 3.2 yields the following result:

Corollary 3.4 If f ∈ R(3)
L , then

|H3(1)| ≤
1

64
.
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