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EXISTENCE RESULT FOR FRACTIONAL DIFFERENTIAL

EVOLUTION EQUATION IN A HILBERT SPACE

F.Z. BERRABAH, B.HEDIA, L. PAOLI

Abstract. In this paper we establish the existence, uniqueness and some reg-

ularity results for the solution of differential evolution equations of fractional
order involving an unbounded linear maximal monotone operator in a Hilbert
space. The proof relies on spectral properties of the operator. An explicit
representation formula of the solution is given, allowing the computation of a

sequence of approximate solutions.

1. Introduction

Fractional differential equations have a large application in a variety of fields
such as physics, mathematics, electrical networks, signal and image processing,
aerodynamics, economics and do so on. Hence there has been increased attention
from both theoretical and the applied points, for more details see [2, 3, 4, 6, 7, 8].

The aim of this work is to prove the existence and uniqueness of a solution, as
well as some regularity and approximation results, for fractional evolution equations
in a Hilbert space. More precisely we consider the problem

cDα
t u(t) +Au(t) = f(t), t ∈ [0, T ], T > 0 (1)

with the initial condition

u(0) = u0 (2)

where cDα
t is the Caputo fractional derivative of order α, A is an unbounded linear

maximal monotone operator in a Hilbert space H, and f ∈ L2(0, T ;H) is a given
data. The main result relies on an appropriate decomposition of u, based on spectral

properties of the operator A, leading to an explicit representation of u as

u(t) =
∑
k≥1

vk(t)ωk, t ∈ [0, T ]
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where the the functions vk are derived by solving scalar fractional differential equa-
tions and (ωk)k≥1 is a family of eigenvectors of A.

The paper is organized as follows. In section 2 we recall some preliminaries
about fractional calculus and maximal monotone operators. Then in section 3 we
state our main result and give some comments, and finally section 4 is devoted to
conclude with an example to illustrate the feasibility of our main result.

2. Background and basic results

In this section, we introduce notations, definitions and theorems which are used
in the rest of the paper.

Let H be a real Hilbert space. We denote by ⟨·, ·⟩H and ∥ ·∥H its canonical inner
product and norm and we let L(H) be the space of all bounded linear operators on
H.

Definition 2.1. Let A : D(A) ⊂ H → H be a unbounded linear operator. The
operator A is monotone if:⟨

Au, u
⟩
H

≥ 0 for all u ∈ D(A).

The operator A is maximal monotone, if in addition R(I + A) = H, i.e. for all
f ∈ H there exists u ∈ D(A) such that u+Au = f .

Definition 2.2. Let A : D(A) ⊂ H → H be an unbounded linear operator such

that D(A) = H. By identifying the space H and its dual H ′, the adjoint A∗ :
D(A∗) ⊂ H → H is defined by the following requirements:

• u ∈ D(A∗) if and only if u ∈ H and there exists g ∈ H such that⟨
u,Av

⟩
H

= ⟨g, v⟩H for all v ∈ D(A)

• for u ∈ D(A∗), set A∗u = g.

Definition 2.3. Let A : D(A) ⊂ H → H be a unbounded linear operator such

that D(A) = H. The operator A is symmetric if⟨
Au, v

⟩
H

=
⟨
u,Av

⟩
H
, for all (u, v) ∈ D(A)×D(A).

The operator A is self-adjoint if and only if A = A∗.

Theorem 2.4. [9, 10] Let A : D(A) ⊂ H → H be an unbounded linear maximal
monotone operator of the Hilbert space H. Then

• D(A) is dense in H,
• A is a closed operator,
• for all λ > 0, (I + λA) is one-to-one from D(A) into H, (I + λA)−1 is a
bounded operator and ∥(I + λA)−1∥L(H) ≤ 1,

• A is symmetric if and only if A is self-adjoint.
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Let us introduce now some basic definitions and properties of the fractional
calculus theory. For a more detailed presentation the reader is referred to [1, 5, 14]
and the references therein.

Definition 2.5. The Euler-gamma function Γ is defined by

Γ(z) =

∫ ∞

0

tz−1e−t dt =

∫ ∞

0

e(z−1) ln(t)e−t dt.

This integral is convergent for all z ∈ C such that Re(z) > 0.

Proposition 2.6. [15] The Euler-gamma function satisfies the following reduction
formula

Γ(z + 1) = zΓ(z) for all z ∈ C such that Re(z) > 0.

In particular, if z = n ∈ N0 then

Γ(n+ 1) = n! for all n ∈ N0

with (as usual) 0! = 1.

Definition 2.7. Let α > 0 and f : R+ → H be in L1(R+,H). Then the Riemann-
Liouville integral Iαt f is given by

Iαt f(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0.

Definition 2.8. The Caputo derivative of order α of a function f : R+ → H can
be written as

cDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds = In−αf (n)(t), t > 0, n− 1 ≤ α < n.

If 0 < α < 1, then

cDα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)

(t− s)α
ds.

Obviously, the Caputo derivative of a constant is equal to zero.

Definition 2.9. The Mittag-Leffler function Eα,β , with α > 0 and β ∈ R, is given
by

Eα,β(z) =
∑
k≥0

zk

Γ(αk + β)
, z ∈ C.

The Mittag-Leffler functions are entire functions and we have

Theorem 2.10. [12] Let 0 < α < 2, β be an arbitrary real number and µ be such

that
πα

2
< µ < min (π, πα). Then there exists C > 0 such that∣∣Eα,β(z)

∣∣ ≤ C

1 + |z|
for all z ∈ C such that µ ≤ |arg(z)| ≤ π.
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Finally let us recall some important properties of Laplace transform with respect
to fractional calculus.

Proposition 2.11. [11] The following properties hold:

L (cDαy(t)) (s) = sαL
(
y(t)

)
(s)−

n−1∑
k=0

sα−k−1Dky(0), n− 1 < α ≤ n, n ∈ N.

In particular if 0 < α ≤ 1 then:

L (cDαy(t)) (s) = sαL
(
y(t)

)
(s)− sα−1y(0).

Moreover

L
(
tβ−1Eα,β(λt

α)
)
(s) =

sα−β

sα − λ
, α > 0, (β, λ) ∈ R2.

3. Existence of the solutions

Let H and V be two real Hilbert spaces of infinite dimension such that V ⊂ H
and A : D(A) ⊂ H → H be an unbounded linear self-adjoint maximal monotone
operator of H.

We assume that

(A1) the domain of the operator A is included into V and the injection of V into
H is continuous and compact,

(A2) there exists a bilinear symmetric continuous and coercive form a : V ×V → R
such that

a(u, v) = ⟨Au, v⟩H for all u ∈ D(A) and v ∈ V .

With assumption (A1) we obtain that the triplet (V,H, V ′) is a Gelfand triplet

and with assumption (A2) we infer that a defines an inner product on V and the
corresponding norm ∥ · ∥V,a, given by

∥u∥V,a =
√
a(u, u) for all u ∈ V

is equivalent to the canonical norm of V . Moreover there exists an increasing
sequence of positive real numbers (λk)k≥1 and a Hilbertian basis (ωk)k≥1 of H
such that

a(ωk, v) = λk

⟨
ωk, v

⟩
H

for all v ∈ V , for all k ∈ N0

and lim
k→+∞

λk = +∞. Furthermore the sequence (λ
−1/2
k ωk)k≥1 is a Hilbertian

basis of V endowed with the inner product a(·, ·). By using classical properties of
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Hilbertian bases we obtain that, for any u ∈ H, the sequences
( m∑

k=1

⟨
u, ωk

⟩
H
ωk

)
m≥1

and
( m∑
k=1

⟨
u, ωk

⟩2
H

)
m≥1

are convergent in H and R respectively and we have

u =
∑
k≥1

⟨
u, ωk

⟩
H
ωk and ∥u∥2H =

∑
k≥1

⟨
u, ωk

⟩2
H

for all u ∈ H. (3)

Similarly, for any u ∈ V , we have

u =
∑
k≥1

1

λk
a(u, ωk)ωk =

∑
k≥1

⟨
u, ωk

⟩
H
ωk and ∥u∥2V,a =

∑
k≥1

λk

⟨
u, ωk

⟩2
H
.

Remark 3.1. Let us observe that, for all k ∈ N0, ωk is an eigenvector of the
operator A associated with the eigenvalue λk. Indeed, reminding that ωk ∈ V and
D(A) ⊂ V , we have

⟨ωk, Av⟩H = ⟨Av, ωk⟩H = a(v, ωk) = a(ωk, v) = ⟨λkωk, v⟩H for all v ∈ D(A).

Hence there exists g = λkωk ∈ H such that

⟨ωk, Av⟩H = ⟨g, v⟩H for all v ∈ D(A)

and we obtain that ωk ∈ D(A∗) = D(A) and A∗ωk = g = λkωk = Aωk.

Moreover the operator A is strongly monotone. Indeed, for all u ∈ D(A), we have

⟨Au, u⟩H = a(u, u) ≥ γ∥u∥2V
where γ > 0 is the coercivity constant of the bilinear form a on V and, recalling
that the injection of V into H is continuous, we infer that

⟨Au, u⟩H = a(u, u) ≥ γ′∥u∥2H for all u ∈ D(A)

with γ′ > 0.

Let us state now our main result.

Theorem 3.2. Let H and V be two real Hilbert spaces of infinite dimension such
that V ⊂ H and A : D(A) ⊂ H → H be an unbounded linear self-adjoint maxi-
mal monotone operator of H such that assumptions (A1) and (A2) hold. Let α ∈
(1/2, 1).Then, for any u0 ∈ H and f ∈ L2(0, T ;H) (with T > 0) the fractional dif-
ferential problem (1)-(2) admits an unique solution u ∈ C0

(
[0, T ];H

)
∩L2(0, T ;V ).

Moreover u is given by the following representation formula

u(t) =
∑
k≥1

Eα,1(−λkt
α)⟨u0, ωk⟩Hωk

+
∑
k≥1

∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)⟨
f(s), ωk

⟩
H
ωk ds, t ∈ [0, T ].

The next corollary will be crucial to the proof of Theorem 3.2.
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Corollary 3.3. Let H and V be two real Hilbert spaces of infinite dimension such
that V ⊂ H and A : D(A) ⊂ H → H be an unbounded linear self-adjoint maximal
monotone operator ofH such that assumptions (A1) and (A2) hold. For allm ∈ N0

let us define V m as the finite dimensional subspace of V generated by the m first
eigenvectors of A, i.e. V m = Vect{ω1, . . . , ωm}. Let α ∈ (1/2, 1). Then, for any
u0 ∈ H and f ∈ L2(0, T ;H) (with T > 0), the Galerkin approximation of problem
(1)-(2) on V m admits an unique solution um ∈ C0

(
[0, T ];V

)
given by

um(t) =
m∑

k=1

Eα,1(−λkt
α)⟨u0, ωk⟩Hωk

+
m∑

k=1

∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)⟨
f(s), ωk

⟩
H
ωk ds, t ∈ [0, T ]

and the sequence (um)m≥1 converges strongly to the unique solution u of problem
(1)-(2) in the Banach spaces C0

(
[0, T ];H

)
and L2(0, T ;V ).

Proof. For all m ∈ N0, let um ∈ C0
(
[0, T ];V

)
be given by

um(t) =
m∑

k=1

vk(t)ωk, t ∈ [0, T ].

Recalling that (ωk)k≥1 is a Hilbertian basis of H we infer that

⟨ωk, ωj⟩H = δij =

{
1 if i = j
0 otherwise

for all (i, j) ∈ N2
0.

Thus, for all m ∈ N0 and for all j ∈ {1, . . . ,m}, we have⟨c
Dα

t um(t), ωj

⟩
H
+
⟨
Aum(t), ωj

⟩
H

=
m∑

k=1

cDα
t vk(t)⟨ωk, ωj⟩H +

m∑
k=1

λkvk(t)⟨ωk, ωj⟩H

= fj(t) =
⟨
f(t), ωj

⟩
H
, t ∈ [0, T ].

Moreover

um(0) =

m∑
k=1

vk(0)ωk =

m∑
k=1

⟨u0, ωk⟩Hωk = PH(u0, V
m)

where PH(·, V m) is the projection operator on V m relatively to the inner product
of H.

It follows that um is the unique solution of the Galerkin approximation of prob-
lem (1)-(2) on V m.



JFCA-2023/14(1) FRACTIONAL DIFFERENTIAL EVOLUTION EQUATION 109

Let us prove that (um)m≥1 is a Cauchy sequence in L2(0, T ;V ). Let m and r be
two natural numbers such that r > m. Then we have

a
(
ur(t)− um(t), ur(t)− um(t)

)
=

r∑
k=m+1

λk

(
vk(t)

)2
=

r∑
k=m+1

λk

{
Eα,1(−λkt

α)vk(0) +

∫ t

0

(t− s)α−1Eα,α (−λk(t− s)α) fk(s) ds

}2

≤ 2
r∑

k=m+1

λk

(
Eα,1(−λkt

α)vk(0)
)2

+2

r∑
k=m+1

λk

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

for all t ∈ [0, T ].

Therefore∫ T

0

a
(
ur(t)− um(t), ur(t)− um(t)

)
dt

≤ 2
r∑

k=m+1

λk

∫ T

0

(
Eα,1(−λkt

α)vk(0)
)2

dt

+2
r∑

k=m+1

λk

∫ T

0

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

dt.

(4)

By using Theorem 2.10 we may estimate the first sum in the right hand side of
(4) as follows

r∑
k=m+1

λk

∫ T

0

(
Eα,1(−λkt

α)vk(0)
)2

dt ≤
r∑

k=m+1

λk

(
vk(0)

)2 ∫ T

0

C2

(1 + λktα)2
dt

=
r∑

k=m+1

C2
(
vk(0)

)2 ∫ T

0

(
λk

1 + λktα

)(
1

1 + λktα

)
dt

≤
r∑

k=m+1

C2
(
vk(0)

)2 ∫ T

0

t−α dt

=
C2T 1−α

1− α

r∑
k=m+1

(
vk(0)

)2
=

C2T 1−α

1− α

r∑
k=m+1

(
⟨u0, ωk⟩H

)2
.

Let us estimate now the second sum in the right hand side of (4). By using Cauchy-

Schwarz inequality we get

r∑
k=m+1

λk

∫ T

0

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

dt

≤
r∑

k=m+1

λk

∫ T

0

(∫ t

0

(t− s)α−1
(
Eα,α

(
−λk(t− s)α

))2
ds

)
×
(∫ t

0

(t− s)α−1
(
fk(s)

)2
ds

)
dt.
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By using once again Theorem 2.10 we obtain∫ t

0

λk(t− s)α−1
(
Eα,α

(
−λk(t− s)α

))2
ds ≤ C2

∫ t

0

λk(t− s)α−1(
1 + λk(t− s)α

)2 ds

=
C2

α

(
1− 1

1 + λktα

)
≤ C2

α
for all t ∈ [0, T ].

Hence
r∑

k=m+1

λk

∫ T

0

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

dt

≤
r∑

k=m+1

C2

α

∫ T

0

(∫ t

0

(t− s)α−1
(
fk(s)

)2
ds

)
dt.

Let us introduce the mappings hα and gk given by

hα :

 R → R

σ 7→
{

σα−1 if σ ∈ (0, T )
0 otherwise

and

gk :


R → R

σ 7→
{ (

fk(σ)
)2

if σ ∈ (0, T )
0 otherwise

for all k ∈ N0. Since f belongs to L2(0, T ;H) the mappings fk belong to L2(0, T ;R)

for all k ∈ N0 and since α ∈ (0, 1) we have hα ∈ L1(R;R). Thus the convolution
product of hα and gk is defined and belongs to L1(R;R). It follows that

r∑
k=m+1

λk

∫ T

0

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

dt

≤
r∑

k=m+1

C2

α

∫ T

0

(hα ∗ gk) (t) dt ≤
r∑

k=m+1

C2

α
∥hα ∗ gk∥L1(R;R)

≤
r∑

k=m+1

C2

α
∥hα∥L1(R;R)∥gk∥L1(R;R) ≤

C2Tα

α2

r∑
k=m+1

∥fk∥2L2(0,T ;R).

Finally we obtain an estimate of ur − um in L2(0, T ;V ) i.e.

∥ur − um∥2L2(0,T ;V ) ≤
1

γ

∫ T

0

a
(
ur(t)− um(t), ur(t)− um(t)

)
dt

≤ 2

γ

(
C2T 1−α

1− α

r∑
k=m+1

(
⟨u0, ωk⟩H

)2
+

C2Tα

α2

r∑
k=m+1

∥fk∥2L2(0,T ;R)

)
where γ > 0 is the coercivity constant of the bilinear form a on V . Since u0 ∈ H

and f ∈ L2(0, T ;H) we infer from (3) that

lim
m→+∞

∑
k≥m+1

(
⟨u0, ωk⟩H

)2
= 0, lim

m→+∞

∑
k≥m+1

∫ T

0

(
fk(t)

)2
dt = 0

and we may conclude that (um)m≥1 is a Cauchy sequence in L2(0, T ;V ). Let us
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prove now that (um)m≥1 is also a Cauchy sequence in C0
(
[0, T ];H

)
. Let m and r

be two natural numbers such that r > m. For all t ∈ [0, T ] we have

∥∥ur(t)− um(t)
∥∥2
H

=
r∑

k=m+1

(
vk(t)

)2
=

r∑
k=m+1

{
Eα,1(−λkt

α)vk(0) +

∫ t

0

(t− s)α−1Eα,α (−λk(t− s)α) fk(s) ds

}2

≤ 2
r∑

k=m+1

(
Eα,1(−λkt

α)vk(0)
)2

+2

r∑
k=m+1

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

for all t ∈ [0, T ].

(5)

Once again we apply Theorem 2.10 to get an estimate of the first sum of the right

hand side of (5), i.e.

r∑
k=m+1

(
Eα,1(−λkt

α)vk(0)
)2

≤
r∑

k=m+1

C2

(1 + λktα)2
(
vk(0)

)2
≤ C2

r∑
k=m+1

(
vk(0)

)2 ≤ C2
r∑

k=m+1

(
⟨u0, ωk⟩H

)2
.

Next we estimate the second sum of the right hand side of (5) as follows.

r∑
k=m+1

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

≤
r∑

k=m+1

(∫ t

0

(
(t− s)α−1Eα,α

(
−λk(t− s)α

))2
ds

)(∫ t

0

(
fk(s)

)2
ds

)
≤

r∑
k=m+1

(∫ t

0

C2 (t− s)2α−2(
1 + λk(t− s)α

)2 ds

)(∫ t

0

(
fk(s)

)2
ds

)
.

Since α ∈ (1/2, 1) the first integral can be estimated by∫ t

0

C2 (t− s)2α−2(
1 + λk(t− s)α

)2 ds ≤
∫ t

0

C2σ2α−2 dσ =
C2

2α− 1
t2α−1 ≤ C2T 2α−1

2α− 1

and we get

r∑
k=m+1

(∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)
fk(s) ds

)2

≤ C2T 2α−1

2α− 1

r∑
k=m+1

∫ t

0

(
fk(s)

)2
ds ≤ C2T 2α−1

2α− 1

r∑
k=m+1

∫ T

0

(
fk(s)

)2
ds.

Finally

∥∥ur(t)− um(t)
∥∥2
H

≤ 2C2
r∑

k=m+1

(
⟨u0, ωk⟩H

)2
+ 2C2 T

2α−1

2α− 1

r∑
k=m+1

∫ T

0

(
fk(s)

)2
ds



112 F.Z. BERRABAH, B.HEDIA, L. PAOLI JFCA-2023/14(1)

for all t ∈ [0, T ], which yields

∥ur − um∥C0([0,T ];H) ≤ 2C2
r∑

k=m+1

(
⟨u0, ωk⟩H

)2
+ 2C2 T

2α−1

2α− 1

r∑
k=m+1

∫ T

0

(
fk(s)

)2
ds

and we may conclude that (um)m≥1 is a Cauchy sequence in C0
(
[0, T ];H

)
. Therefore

(um)m≥1 converges strongly to u both in L2(0, T ;V ) and in C0
(
[0, T ];H

)
. Hence

um(0) =

m∑
k=1

⟨u0, ωk⟩Hωk −→ u(0) =
∑
k≥1

⟨u0, ωk⟩Hωk = u0

and, for all k ∈ N0,⟨c
Dα

t u(t), ωk

⟩
H
+
⟨
Au(t), ωk

⟩
H

= cDα
t vk(t) + λkvk(t)

= fk(t) =
⟨
f(t), ωk

⟩
H
, t ∈ [0, T ].

It follows that, for all v ∈ V m and for all m ∈ N0, we have⟨c
Dα

t u(t), v
⟩
H
+
⟨
Au(t), v

⟩
H

=
⟨
f(t), v

⟩
H
, t ∈ [0, T ].

�

We deal now with the proof of Theorem 3.2

Proof. We investigate the existence and uniqueness of a solution to problem (1)-(2)
by using the Hilbertian basis given by the eigenvectors (ωk)k≥1 of the operator A.
Then u : [0, T ] → H admits the following decomposition

u(t) =
∑
k≥1

vk(t)ωk, t ∈ [0, T ]

where vk : [0, T ] → R is given by

vk(t) =
⟨
u(t), ωk

⟩
H
, t ∈ [0, T ].

Starting from (1) we obtain⟨c
Dα

t u(t), ωk

⟩
H
+
⟨
Au(t), ωk

⟩
H

=
⟨
f(t), ωk

⟩
H
, t ∈ [0, T ]

for all k ∈ N0. By observing that⟨c
Dα

t u(t), ωk

⟩
H

=c Dα
t

⟨
u(t), ωk

⟩
H
,
⟨
Au(t), ωk

⟩
H

= a
(
u(t), ωk

)
= λk

⟨
u(t), ωk

⟩
H

we get
cDα

t vk(t) + λkvk(t) = fk(t), t ∈ [0, T ]

with fk(t) =
⟨
f(t), ωk

⟩
H
. Hence we consider the scalar fractional differential equa-

tions given by

cDα
t vk(t) + λkvk(t) = fk(t), k ∈ N0 (6)

with the initial condition

vk(0) =
⟨
u(0), ωk

⟩
H

=
⟨
u0, ωk

⟩
H
. (7)

By applying Laplace transform to (6) and taking into account the initial condition
(7), we obtain

sα
(
L
(
vk(t)

))
(s)− sα−1vk(0) + λk

(
L
(
vk(t)

))
(s) =

(
L
(
fk(t)

))
(s)
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which can be rewritten as(
L
(
vk(t)

))
(s) =

1

sα + λk

(
L
(
fk(t)

))
(s) +

sα−1

sα + λk
vk(0)

=
(
L(tα−1Eα,α(−λkt

α))
)
(s)
(
L
(
fk(t)

))
(s)

+
(
L(Eα,1(−λkt

α))
)
(s)vk(0)

= L
(
tα−1Eα,α(−λkt

α) ∗ fk(t) + Eα,1(−λkt
α)vk(0)

)
(s).

Hence

vk(t) = Eα,1(−λkt
α)
⟨
u0, ωk

⟩
H
+

∫ t

0

(t− s)α−1Eα,α

(
−λk(t− s)α

)⟨
f(s), ωk

⟩
H
ds

which proves the uniqueness of the solution to problem (1)-(2). For the existence,

using corollary 3.3 and by recalling that
∪
m≥1

V m is dense in V , we may conclude

that u is the unique solution of problem (1)-(2). Hence theorem 3.2 is completely
proved. �

Remark 3.4. When α = 1 the Caputo derivative of order α corresponds to the
classical first order derivative. Hence Theorem 3.2 and Corollary 3.3 extend to dif-
ferential evolution equation of fractional order α ∈ (1/2, 1) the well-known existence
and uniqueness result for parabolic problems ([13]).

3.1. Conclusion. We deal in this paper with the existence of solution for some
fractional evolution equation using a linear maximal monotone in Hilbert space not
necessarily bounded, we project in the future, to replace the Hilbert space by a
Banach space X with a nonlinear m-accretive operator and an upper semi-inner
product on X defined by

⟨x, y⟩+ = sup{x∗(y), x∗ ∈ J(x)}

where, J : X → 2X
∗
is the duality mapping, given by

J(x) = {x∗ ∈ X∗, x∗(x) = ∥x∥2 = ∥x ∗ ∥2∗}, ∀ x ∈ X,

to study the existence of solutions sets and its topological structure.

4. Example

We may illustrate this result by an example. Let Ω be an open bounded domain
of Rd, with d ≥ 1, of class C2 such that ∂Ω is bounded. We let H = L2(Ω) and
V = H1

0 (Ω). We consider a symmetric second order uniformly elliptic operator A
defined by 

D(A) = H2(Ω) ∩H1
0 (Ω)

Au = −
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
with aij ∈ C1(Ω) for all i, j ∈ {1, . . . , d} and (i) aij(x) = aji(x) for all x ∈ Ω, (ii)
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there exists Ca > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ Ca

d∑
i=1

ξ2i for all (ξi)1≤i≤d ∈ Rd and for all x ∈ Ω.

By using Green’s formula we obtain

⟨Au, v⟩H =

∫
Ω

( d∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x)
)
dx for all u ∈ D(A) and v ∈ V

and we may define a : V × V → R by

a(u, v) =

∫
Ω

( d∑
i,j=1

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x)
)
dx for all u ∈ V , v ∈ V .

It follows that A is a linear self-adjoint maximal monotone operator (see [9]). Ob-
viously a is bilinear symmetric and continuous on V and, by using Poincaré’s in-
equality, we obtain that

a(u, u) ≥ Ca

∫
Ω

∥∥∇u(x)
∥∥2 dx ≥ Ca

C2
P + 1

∥u∥2V for all u ∈ V

where CP > 0 denotes Poincaré’s constant on Ω. It follows that a is coercive
on V . Finally, with Rellich theorem, we infer that the injection of V into H
is compact Hence assumptions (A1) and (A2) are satisfied. By applying The-

orem 3.2 we obtain the existence and uniqueness of a solution u to the non-
classical diffusion problem with Caputo fractional derivative in time and homo-
geneous Dirichlet boundary conditions, with the following regularity property u ∈
C0
(
[0, T ];L2(Ω

)
∩ L2

(
0, T ;H2(Ω) ∩H1

0 (Ω)
)
.
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