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RELATIVE (p,q)-ORDER AND (p,q)-TYPE OF ENTIRE
FUNCTIONS OF TWO COMPLEX VARIABLES

TANMAY BISWAS, CHINMAY BISWAS

ABSTRACT. We introduce the notions of relative (p, ¢)-order and relative (p, q)-
type of entire functions of two complex variables. Growth properties are in-
vestigated.

1. INTRODUCTION

Let f be a non-constant entire function of two variables holomorphic in the closed
poly disc U = {(z1,22) : || <7 (i=1,2)} (r1,72 > 0). Denote My (r1,72) =
max {|f(z1, 22)| : |z:| <r; (i = 1,2)} which, by the maximum principle and Hartogs
theorem [6], is an increasing function of each 7, ro.

For z € [0,00) and k € N, define iterations of the exponential and logarithmic
functions as

exp[k] T = exp (exp[k*” x) and log[k] z = log <log[k_1] x) ,
with convention that log[o] r=ux, log[_l] z =expz, expll z = z, and expl~ 2 =

log . Through out the paper we take p,q,a € N.
The classical order of f(z1,22) is defined as (see, e.g., [0], also [I])

log log My (r1,72)

f) = limsup
p( ) 1,72 —>00 1Og(7"17“2)

The equivalent formula for p(f) is
p(f) = inf {u >0: Mg(ri,r2) < exp ((7‘17‘2)“), for all 7; > R(u), i = 1,2}7
which can alternatively be written as
p(f) = inf {u > 0: Ms(ri,79) < expl? (nlog(ri7a)),
for all r; > R(p), i = 1,2}.
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Similarly the lower order A(f) of f is defined as
Af) = sup {u >0: My(ry,re) > expl? (nlog(rira)),
for all r; > R(p), i = 1,2}.

The rate of growth of entire function of two variables normally depends upon
the order of it. The entire function of two complex variables with higher order is
of faster growth than that of lesser order. But if orders of two entire functions of
two variables are the same, then it is impossible to detect the function with faster
growth. In that case, it is necessary to compute another class of growth indicators
of entire functions of two variables called their type and lower type and thus one
can define type and lower type of an entire function f of two variables denoted by
o(f) and T(f) respectively (see, e.g. [9]) as follows:

log My (r1,7 log M (r1,7
7(f) = liminf 0‘51‘7(12) < o(f) = limsup w7
rira=eo pfU) 4 pplf) rrs e 72D 4 D

where 0 < p(f) < co.
Alternatively, the above can also be written as

o(f) = inf {/J >0 My(ry,re) < exp (i) + pry D),

for all 7; > R(u), i = 1,2},

a(f) = sup {u >0: Mg(ri,r2) > exp (urf(f) _~_ma2p(f))7
for all r; > R(u), i = 172}'

Similarly one may define the following growth indicators:

7(f) = sup {u > 01 My(r,re) > exp (urd®) 4 ),
for all r; > R(p), i = 1,2}’
) = inf{,u >0 My(r1,re) < exp (jr0) 4 prd @),

for all r; > R(p), i = 1,2}.

A generalization of the classical order and type has been studied by [11I] and by
Juneja, Kapoor and Bajpai [7, [8]). More precisely, for given integers p and g with
p > g, the (p, g)-order is defined as

, log” M(r)
Ppq = limsup —————= = limsup
r—00 log[q] T t—o0
where M (r) = exp[f(log)]. The (p,q)-type is defined as
: log" T M(r) log”~? f(#)
Opg = limsup —=r———-" = lim sup ————"=—.
r—oo  (log!?™H r)Pra t—oo  (log'?™ = t)Pra

b

log” ! £ (1)
log[qfu t

Later on, a general relative order and type of entire functions of several variables
have been investigated by Kiselman [I0], where the approach of convex functions
is implemented.
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Extending the notion (p, ¢)-th order, recently Shen et al. [I2] introduced the
new concept of [p, g] — ¢ order of an entire function of single variable where p > q.
Later on, combining the definitions of (p, ¢)-order and [p, ¢] — ¢ order, Biswas (see,
e.g., [4]) redefined the (p,q)-order of an entire function of single variable without
restriction p > q.

From all of the above, it is natural to give the (p, g)-order of entire functions of
two variables in the following way.

Definition 1. The (p,q)-order of f, denoted by pP9(f), is defined by
pPO(f) = inf {u > 0: My(r1, ) < expl?! (1 log!? ry + plogl? T2),
forallr; > R(p), i = 1,2}.
Similarly, the (p,q)-lower order of f, denoted by X9 (f), is defined as follows
)\(p7q)(f) = sup {u >0: Ms(ri,re) > expl”! (,u log[q] r + /Llog[‘ﬂ 7’2),
for allr; > R(u), i = 1,2}.

In this connection we give the following definition which is analogous to the
definition of index-pair of an entire function of single variable introduced in [7, [§].

Definition 2. An entire function f is said to have an index-pair (p,q) if b <
pP9(f) < oo and pP~19V(f) is a nonzero finite number, where b =1 if p = q
and b =0 otherwise.

Moreover if 0 < p®9(f) < oo, then

pP=D(f) =00, ifa<p,
p(p’q*a)(f) =0, ifa <q,
p(p+a,q+a)(f) =1, ifa=1,2,..

Similarly, for 0 < P9 (f) < oo,
AP=a9)(f) = oo, if a < p,

AP, g —a)(f) =0, if a <q,
AMp+a,qg+a)(f)=1, ifa=1,2,..

Now in order to compare the growth of entire functions having the same (p, q)-
order, one may introduce the concepts of (p, ¢)-type and (p, g)-lower type.

Definition 3. The (p,q)-type, P9 (f) and the (p,q)-lower type, PP (f) of an
entire function f with 0 < pPD(f) < co are defined as follows

o P9 (f) = inf {H >0 Mg (ry,r2) < expl’™ ! (M(log[q’” )P 0D
+p(loglt Tz)p(pm(f)), for allr; > R(p), i = 1,2}

and

F(Pa) (f) = sup {,u >0: Mg(ri,re) > exp[p_l] (,u(log[qfl] rl)ﬂ“”‘”(f)

+u(log[q_1] rg)p(pm(f)), for all r; > R(p), i =1, 2}.
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Likewise, to compare the growth of entire functions having the same (p, ¢)-lower
order, one can also introduce the concepts of (p, ¢)-weak type and (p, q)-lower weak
type of an entire function f.

Definition 4. The (p,q)-weak type, 77D (f) and (p, q)-lower weak type, 7D (f)
of an entire function f with 0 < A9 (f) < oo are defined as follows:

T(p"I)(f) = inf {u >0: Mg(ri,re) < explP~ 1! (u(log[qfl] rl)’\(p’q)(f)
+,u(log[q_1] rg))‘(pm(f)), for allr; > R(p), i =1, 2}
and
?(p’q)(f) = sup {u >0: Ms(ri,re) > explP™ ! (N(lOg[q_” 7"1)’\<p’q)(f)
+u(logla=1 rg)A(p’Q)(f)), for allm; > R(p), 1 =1, 2}.

Remark 1. For p =1 and ¢ = 1 we obtain the classical definitions of order and
type above. Also for p = k and q = 1, we get generalized order, type, and lower

type p¥(£), o)(f), and T(f) ete,

However the concept of relative order of entire functions of a single variable as
well as their technical advantages not comparing with the growth of expz, was
first introduced by Bernal [3]. In the case of relative order, it was then natural
for Banerjee and Dutta [2] to define the relative order of entire functions. Namely,
the relative order of an entire function f with respect to another entire function g,
denoted by pg(f), is defined by

po(F) = inf {1 > 02 My (ri,m) < My(ri,rh)s v = R(u), i = 1,2}

Similarly, the relative lower order of f with respect to g, denoted by A (f), is
defined as follows

Ag(f) = sup {p >0: My(ri,r2) > My(ri',rh); ri > R(p), i = 1,2}.

Now in order to make some progress in the study of relative order of entire
functions of two variables, one may introduce the definition of relative (p, g)-order
between two entire functions in the light of index-pair as follows.

Definition 5. Let f and g be two entire functions with indez-pairs (m,q) and
(m, p) respectively. Then the relative (p, q)-order of f with respect to g, denoted by

pgp’q)(f) is defined by
pgp’q)(f) = inf {u >0: Mg(ri,re)
< Mg(exp[p] (1 log!! 1), exp? (p log!! 7'2)), for all r; > R(p), i =1, 2}.

Similarly, one can define the relative (p,q)-lower order of f with respect to g, de-
noted by )\,(JP’Q)(f), is defined as follows

)\épﬂ)(f) = sup {N >0: Mf(h,?“z)

> Mg(exp[p] (1 log!! 1), exp? (p log!! 7"2)), for all r; > R(p), i =1, 2}.
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Remark 2. If f and g have the same indez-pair (p, 1), then Deﬁnition@ reduces to
that of [2]. If f and g have index-pairs (m, 1) and (m, k) respectively, then we get the
definition of generalized relative order (respectively generalized relative lower order).

Further, if g = expl™ =V (2120), then py(f) = pI"™)(f) and pfP(f) = p(™D(f).
Moreover, if f is an entire function with an index-pair (2,1) and g = exp(z122),
then Definition [5] becomes the classical one.

Now in order to refine the above growth scale, one may introduce the definitions
of other growth indicators, such as relative (p, q)-type and relative (p, ¢)-lower type
between two entire functions as follows.

Definition 6. Let f and g be two entire functions with index-pairs (m,q) and
(m,p) respectively. Then the relative (p,q)-type, Jép’q)(f) and the relative (p,q)-
lower type, Eép’q)(f) of [ with respect to g with non-zero finite relative (p, q)-order
pgp’Q)(f) are defined as

o D(f) = int {n>0: My(rs,12)
_ _ (p,a) — - P
< Mg(eXp[p H (p(logh™ )2 D) explP = (u(loglt™! ra)%s (f))>’
for all ;> R(u), i= 1,2}
and
Egp#ﬁ(f) = sup {’u >0: Mf(?“l,Tg)
_ _ (pyq) — - oo
> Mg<eXp[p Y (1(loglt™ )" ), explr=t (u(loght ™1 ry)7 (f)))

forallr; > R(p), i = 1,2}.

Analogously, to determine the relative growth of f having same nonzero finite
relative (p,q)-lower order with respect to another entire function g, one can in-
troduce the definition of relative (p, ¢)-weak type Tg(p ’q)( f) and relative (p, ¢)-lower
weak type f((]pm(f) of f with respect to g of finite positive relative (p, ¢)-lower order

AP (£) in the following way.

Definition 7. Let f and g be two entire functions with indez-pairs (m,q) and (m, p)

respectively. Then the relative (p, q)-weak type Tép’q)(f) and the relative (p, q)-lower

weak type ?_((Jp’q) (f) of f with respect to g with nonzero finite relative (p,q)-lower

order )\E,p’q)(f) are defined as
T;p’q)(f) = inf {,u >0: Mf(T17T2)
(p,a)
< M, (expP U (u(loght =V r )N D), explP U (u(logl U 7y) D))
for all v; > R(u), i= 172}
and
?ép’q)(f) = sup {u >0: Mg(ri,r2)
=11 (10l 1)) excpP—11(p(loglt=1 7)o )
> My (exp? M (u(log?H r )2 D) explP = (u(logl? ) )
for all r; > R(p), i = 172}-
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Remark 3. If f and g have the same index-pair (p,1), then Definition @ and
Definition @ reduce to the definitions of relative type o4(f) (respectively relative
lower type 54(f)) and relative weak type 74(f) (respectively relative lower weak type

T4(f))-

’ If f and g have indez-pair (m,1) and (m, k) respectively, then we get the defini-
tions of generalized relative type o!¥! (f) (respectively generalized relative lower type
a*1(f)) and generalized relative weak type T*1(f) (respectively generalized relative
lower weak type 7*(f) ).

Further, if g = expl™ (2 + 22), then o,(f) = o™(f) (G,(f) = ™ (f));
() = T(7) (7o (1) = 7)) amd 0 (1) = 0 () (3, 0)( ) = 7()
(r" P (f) = 7m0 (f) (7O (f) =T (f)).

Moreover if f is an entire function with an indez-pair (2,1) and g = exp(z1+22),
then Definition[6] and Definition [7 become classical ones respectively.

In this connection, we finally remind the following definitions from [5] which are
needed in the sequel.

Definition 8. 1) An entire function f is said to have Property (R) if for any o > 1
and for all sufficiently large r1,r2,
[Mf(rh TQ)]2 < Mf(r(f7 Tg).
2) A pair of entire functions f and g are said to have mutually Property (X) if for
all sufficiently large 71,72,
My.g(ri,m2) > Mg(ri,7m2) and My.g(ri,m2) > Mg(ri,r2)

hold simultaneously.

Some examples of functions with or without the Property (R) can be found in [5].
Also the functions f(21,22) = 2129 and g(z1, 22) = (2122)? have mutually Property

Our aim is to investigate several basic properties of relative (p, ¢)-order, relative
(p, q)-type and relative (p, q)-weak type of entire functions of two variables with
respect to another one under somewhat different conditions. The standard defini-
tions and notations in the theory of entire function of several variables are available
in [6]. In particular, the following result is needed in the sequel.

Lemma 1. [6] Suppose that f is a non-constant entire function of two variables,
a>1and0< B < a. Then

My (i, arg) > BMy(r1,12) for all sufficiently large r1,75.

2. RELATIVE (p, q)-ORDER
In this section we present the main results on the relative (p, ¢)-order.

Theorem 1. Let f1, fo and g be three entire functions of two variables and either
of f1, fo is of regqular relative (p,q) growth with respect to g.
Then

APD(f) £ fr) < max{APD(f1), \PD(f)}.

The equality holds when any one of ,\_Ef"'q)(fi) > )\gp’q)(fj) with at least f; is of
reqular relative (p,q) growth with respect to g where i,5 =1,2 and i # j.
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Proof. If )\gp,q) (fi£f2) = 0 then the result is obvious. So we suppose that )\ép’Q) (fit
f2) > 0. We can clearly assume that )\gp’q)(fk) is finite for £ = 1,2. Further let
max{\"? (f1), AP (f,)} = A and f, be of regular relative (p,q) growth with
respect to g.

Now for any arbitrary € > 0 from the definition of )\(gp ’q)( f1), we have for a
sequence values of 71,7, tending to infinity that

My, (r1,72)

< M, (explP=1 (logl 1 ) APV (042) | a1 (1ggla=1) ) AT () +2))
i.e., My (r1,72)
< My(exp? =1 loglt=1 r; )B+2) exply=1)(1oglt1] ) (849 1)
Also for any arbitrary € > 0 from the definition of pép’q)(fg) (= /\_S,”’q)(fg)),

we obtain for all sufficiently large values of 71,7, that
My, (r1,72)
< M, (explP=(logle =1y ) A8 (2)+2) explp=1 (ogle—1] 1y ) A5 (f2)+e)y
i.€., Mf2 (7"1, 7“2)
< My (explP1] (loglt= 1 7 )(A+e) explP=U(1ogld=1] ry)(A+e)) (2)
Now we obtain from and for a sequence values of 71,75 tending to
infinity that
Mf1if2 (’/‘1, T2)
< 2Mg(exp[p_1] (log[q_l] )8+ explr— (log[q_l] 1) (AT, (3)
Therefore in view of Lemma |1} we obtain from for a sequence values of
r1, 79 tending to infinity that
My, (r1,75) < My(3expl?™(loglt ™! 1)) (3F9) 3expl=H(loglt ™1 1y ) (41))
i€, Mptys,(r1,m2) < Mg(exp[p*u (loglt=t 7 )(A+4e) oxplP=H(1ogla=1 1y ) (At4e))
Since € > 0 is arbitrary, we get from above that

)\!(Jp,q)(f1 +f)<A= maX{)\gp’q(fl), Agp’q(fz)}-

Similarly, if we consider that f; is of regular relative (p,q) growth with
respect to g or both f; and fy are of regular relative (p, ¢) growth with respect to
g, then one can easily verify that

APD(fr £ f2) < A = maxAP D (f1), APV (f2) )} (4)
Now let Agp"” (f1) > )\gp"”(fz) and at least fy is of regular relative (p,q) growth
with respect to g. Also let f = f; £ f3. Then in view of we get that
APD (1) < APD(£)). As, f; = (f + f2) and in this case we obtain that AP (f1)
< max{/\_gp’q)(f),/\ép’q)(fg)}. As we assume that )\(gp’q)(fg) < )\E]p’q)(fl), we have
)\gp’q)(fl) < /\(gp’q)(f) and hence

)\gp,q)(fl £ ) > )\gp,q)(fl) — max{Aép’q)(fl),)\gp’Q)(fz)}-

Further if we consider /\épm(fl) < )\épm(fg) and at least f; is of regular relative
(p, q) growth with respect to g, then one can also verify that

APD(f) & fr) > A = max{APD(f1), \PD(f2)}. (5)
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So the conclusion of the second part of the theorem follows from and

(5)- O

Theorem 2. Let f1, fo be any two entire functions of two variables with relative

order pg, (p.a) (f1) and p(p’q (f2) with respect to another entire function g1 of two
variables. Then

P (f1 % f2) < max{p®D(f1), oD (f2).
The equality holds when p(p q)(f ) # Por o q)(f )

We omit the proof of Theorem [2] as it can easily be carried out in the line
of Theorem [

Theorem 3. Let f1, g1 and g be any three entire functions of two variables such
that )\g’q)(fl) and )\(p’q)(fl) exit. Then

N (F1) 2 minf A (), AR (f1)}-
The equality holds when )\é’f’Q)(f ) # )\(p q)(f ).

Proof. If )\(p’iq?qz (f1) = oo, then the result is obvious. So we suppose that )\(p’iq?qz (f1) <

oco. We can clearly assume that )\gi’q)(fl) is finite for k£ = 1,2 . Further let ¥ =
min {)\(p q)( f1), A§€’q>(f1)}. Now for any arbitrary ¢ > 0 from the definition of
)\g’z Q)( f1), we have for all sufficiently large values of rq, ro that

My, (expl?=1 (logt=1 7y )5 U =9) eyl (ggla =1 ) N5 ()21

< My, (r1,72)

where k =1, 2.
Therefore, from above we get for all sufficiently large values of r1,ry that
M,, (expP~1] (10g[q—1] 1)Y= explP—1] (1Og[q—1] 1)Y= (6)
< Mf1 (r17 T2)
where k =1, 2.

Now we obtain from above and Lemma [1| for all sufficiently large values of
r1, 79 that

My, 14, (expP= (10gl1 ™1 1) (Y =) excplP =1 (10gla71 10) (Y =)) < 201, (11, 79)

o 1 — - —& 1 - - —E&
i1y My () ex0 (10801 ) 79, () expl? =Y (loglo 11 7)(¥~2))

< Mf1 (7“1, 7’2)
i, My +g, (exp[p—l] (1Og[q*1] 7“1)(‘1’_45), eXp[zo—l] (1Og[q*1] T2)(\P—46))
< Mf1 (7”1,7“2).

Since € > 0 is arbitrary, we get from above that

Ay, (f1) 2 @ = min{ AL (£1), A2 (1)} (7)

Now let )\gff’Q)(fl) < )\(gg’Q)(fl) and g = g1 + go. Then in view of we get that
)\ép’Q)(fl) > )\gf’(n(fl). Further, g1 = (g £ g2) and in this case we obtain that
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APD () > min{ AP (1), XD (1)}, As we assume that APV (f1) < AED (1),
we have AP (f1) > AP (£,) and hence

AL (F) S AED(fir) = min{APD (1), ABD (1)}

91192

Similarly, if we consider )\ ( fi) > /\gi q)( f1), then one can also derive that

A, (f1) < W = min{AP ) (1), AL (f1)). (8)
So the conclusion of the second part of the theorem follows from and .

Theorem 4. Let f1, g1 and g be any three entire functions of two variables such

that p(p’q)(fl) and p(p’q)(fl) exit. Also let fi be of regular relative (p,q) growth with
respect to at least any one of g1 or go. Then

p& D (1) = min{ PO (f1), p2 0 (f1)}.

The equality holds when any one of p(p’q)(fl) < pgf’q (f1) with at least fy is of
regular relative (p, q) growth with respect to g; where i,j =1,2 and i # j.

We omit the proof of Theorem [4] as it can easily be carried out in the line
of Theorem [3l

Theorem 5. Let f1, fo, g1 and g2 be any four entire functions of two variables.
Then

Py (F1 £ f2) < max{min{pl? (f1), o (f1)}, min{pf? (f2). o5 (f2)}]
when the following two conditions hold:

(i) péf"”(fl) < pgf’q)(fl) with at least f1 is of reqular relative (p,q) growth with
respect to g; fori=1,2, j = 1,2 and i # j; and

(i) pﬁ,{”” (f2) < pgfj’q (f2) with at least fo is of reqular relative (p,q) growth with
respect to g; fori =1,2, 5 =1,2 andi#j

The equality holds when p(p’q)(fi) < p’f’q (f;) and pp’q (fi) < pgg’q (f;) holds
simultaneously fori=1,2; j = 1,2 and i # j.

Proof. Let the conditions (i) and (ii) of the theorem hold. Therefore in view of
Theorem [2] and Theorem [] we get that

max[min{p® ) (1), p 0 (f1)}, min{pPV(f2), pLV (f2)}]
= max[p" 0 (£1), 078 (f2)]
> pPD (f1 £ fo). (9)

Since p(p Q)(fi) < pgf q)(f]) and p(pq (fi) < pé’; Q)(fj) hold simultaneously
fori=1,2; j =1,2 and ¢ # j, we obtain that

either min{p*®(f1), p29 (1)} > min{p>9(f2), P29 (f2)} or

min{ o2 (f2), pZ0(f2)} > mindp$ 0 (fr), pZP(f2)} holds.

Now in view of the conditions (¢) and (i¢) of the theorem, it follows from
above that

either p;f’i)gg (f1) > pgligg (f2) or P;’fi)gg(f ) > pé’figg (f1)

which is the condition for holding equality in @
Hence the theorem follows. O
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Theorem 6. Let f1, fa, g1 and g2 be any four entire functions of two variables.
Then

Agridy, (1 & f2) = minfmax{AR D (£1), AED (f2) } max{ AL (1), AL (f2)}]
when the following two conditions hold:
(7) )\glj’Q)(fi) p’Q)(fJ) with at least f; is of regular relative (p,q) growth with
respect to g1 fori = 1 2,j=1,2andi+# j; and
(i3) A p’q (fi) > p’q (fj) with at least f; is of regular relative (p,q) growth with
respect to g2 forz =1,2,j=1,2 andi # j.
The equality holds when )\gf”)(fl) < )\gjm(fl) and )\g;’Q)(fz) < /\éﬂ”‘”(fz) hold
simultaneously fori=1,2; j = 1,2 and i # j.

Proof. Suppose that the conditions (i) and (i) of the theorem hold. Therefore in
view of Theorem [I] and Theorem [3] we obtain that

minfmax{ ALY (f1), AL (f2) }, max{ ALV (f1), AL (f2)}]
= minA\E (f1 £ o), AED(fr )]
<AL (fu £ f2). (10)
Since )\gf’q)(fl) < )\gf’q)(fl) and )\ (fg) < Ag; p 9 (f2) hold simultaneously
fori=1,2; j=1,2 and i # j, we get that
either max{)\(”””(fl) APD (o)) < max{)\é’;’q)(fl) )\(Z’Q)(fg)} or

70
max{ AL (f1), ALV (f2)} < max{ AP (f1), A\P?(f2)} holds.
Since conditions (z) and (i7) of the theorem hold, it follows from above that

either A9 (fy & fo) < AP (f1 £ fo) or APD(fi + fo) < AZD(fy + fo)
which is the condition for holding equality in .

Hence the theorem follows. O

Theorem 7. Let f1, fo and g1 be any three entire functions of two variables. Also
let at least f1 or fa be of reqular relative (p,q) growth with respect to g1. Then

PD(fy - fo) < max{ AL (f1), \PD(f)}

provided g1 has the Property (R). The equality holds when f1 and fo satisfy Property
(X).
Proof. Suppose that )\gf’q)(fl - f2) > 0. Otherwise if A p’Q)(fl - f2) = 0 then the
result is obvious. Let us consider that fy is of regular relative (p,q) growth with
respect to g1. Also suppose that max {AL? (£1),A\Z9(f,)} = A. We can clearly
assume that A2 (f,) is finite for k = 1,2. Now we have from (1 . 2) for a sequence
values of 71, ry tending to infinity that

My, g, (r1,72)

< [My, (expP~H(loglt=V ry)(A+) explP—(1oglt=1 1)) (A+2))2,
Also in view of Definition [8] we obtain from above for any § > 1 and for a sequence
values of 71,72 tending to infinity that

Mfl'fz (Tlv TQ)

< M,, (expP~1 (logla=1 1 )3(A+e) oxplP—1(1ogla=1l 1)) 0(A+e))
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since g1 has the Property (R). Since € > 0 is arbitrary, now letting 6 — 17, we get
from above that

/\gzl),tI)(f cfa) < A= max{/\ P:4) (f1), g’f’q)(fQ)}

Similarly, if we consider that f; is of regular relative (p,q) growth with
respect to g1 or both fi and fy are of regular relative (p, ¢) growth with respect to
g1, then also one can easily verify that

)‘Eff’q)(ﬁ f2) S A= max{)\(pq)( f1) /\(pq)(f2)}' (11)

770
Now let f1 and f satisfy Property (X), then of course we have My, .1, (r1,7r2) >
My, (r1,r9) and My, .5, (r1,72) > My, (11, 72) for all sufficiently large values of 1, 7.
Therefore from the definition of relative (p, ¢)-th lower order, we get for a sequence
values of 71,72 tending to infinity that

Mf1 (Tl,rg) < Mfl'f2 (7“1,7“2)
< ]\491 (eXp[p_l] (log[q—l] Tl)(Aéz'Q)(fl'fZ)JrE) exp[p—l] (log[q—l] Tz)()\gpva)(fl.fz)Jre)).

Since € > 0 is arbitrary, we get from above that Ay p 9 (fi-f2) > Aé’f’q)(fl). Similarly
/\fff q)(f - fa) > /\éﬁ’ q)(fg) and therefore

APD(fr- f2) > A = max{ALD (f1), APV (f2)}- (12)
Hence the theorem follows from and . O

Theorem 8. Let f1, fo be any two entire functions of two variables with relative
order p(p ) (f1) and p(p Q)(fg) with respect to another entire function g, of two
variables. Then

pPD(f1 - f2) < max{p®D(f1), pPD (f2)}
provided g1 has the Property (R). The equality holds when f1 and fo satisfy Property

(X)-

We omit the proof of Theorem [§] as it can easily be carried out in the line
of Theorem

Theorem 9. Let f1, g1 and g2 be any three entire functions of two variables. Also
let )\!(JII’Q)(fl) and /\ép’Q)(fl) exist. Then

ARG (F1) 2 minfARD (£1), AR (/1))
provided g1 - g2 has the Property (R). The equality holds when g1 and go satisfy
Property (X).

Proof. Suppose that )\gl G (fl) < 0o. Otherwise if Ag’f Zl(fl) = oo then the result is
obvious. Also suppose that mm{)\ﬁ,’j q)(fl), Ag’; q)( f1)} = ¥. We can clearly assume

that )\gi’Q)(fl) is finite for k = 1, 2.
Now we get in view of @ for all sufficiently large values of 71,72 that

My, .4, (expP™V (loglt=H ) (¥=2) explP=l(10gla=1 1)) (¥=2))
< [My, (r1,m2)]”
(expl?~ U (loglt= r)(¥=9) explP=1(10gla= 1 1y) (¥ =2))]2
< Mf1 (Tl, 7’2).

i.e., [Mg

1-92
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Now in view of Definition [§] we obtain from above for any § > 1 and for all
sufficiently large values of r1,ry that

(V—¢ (T —¢)
My,.5 (expl? " (loglt =7y ) 577 exp® =V (logh =1 1) 57) < My, (r1,72)

since g1 - go has the Property (R). Since € > 0 is arbitrary, now letting § — 17, we
obtain from above that

AR (f1) 2 0 = min{APD(f1), APD(f1)}. (13)

Now let g1 and go satisfy Property (X), then of course we have My, .4, (r1,72) >
My, (r1,7r2) and Mg, .g,(r1,72) > Mg, (1, 72) for all sufficiently large values of 1, 75.
Therefore from the definition of relative (p, ¢)-th lower order, we get for all suffi-
ciently large values of r1, 79 that

A(P-a) A(P-9)

My, (expP ™ (1oglt™ 1 1) A% ) 9) expP=1) (loglt 1 1y A5 (1))

(p,q) (p,q)

< My, .q, (exp[p_l] (log[q_l] 7“1)(’\91'92(f1)_8), expP~1! (log[q_l] 7’2)(>‘91-92(f1)_8))

< ]\4]01 (Tl,Tg).

Since & > 0 is arbitrary, we get from above that A4 (p.q) (f1) > gf’(_f,z (f1). Similarly

Affi q)(f ) > A_S,’I’Zl( f1) and therefore

AP (F1) <@ =min{ALD(f1), ABD (1)} (14)
Hence the theorem follows from and . O

Theorem 10. Let f1, g1 and go be any three entire functions of two variables. Also
let f1 be of regular relative (p,q) growth with respect to at least any one of g1 or ga.
Then

p&D(f1) = min{ o0 (f1), pBD(f1)}

provided g1 - g2 has the Property (R). The equality holds when g1 and go satisfy
Property (X).

We omit the proof of Theorem [10] as it can easily be carried out in the line
of Theorem

Now we state the following two theorems without their proofs as those can
easily be carried out with the help of Theorem [§] Theorem [7} Theorem [J] and
Theorem [I0] and in the line of Theorem [5] and Theorem [0] respectively.

Theorem 11. Let f1, fa, g1 and g2 be any four entire functions of two variables.
Also let g1 - g2 satisfy the Property (R). Then,

p&D (f1 - fo) = max[min{p®? (f1), p2O (1)}, min{p@ D (fo), p 9 (f2)}],

when the following four conditions hold:

(1) f1 is of reqular relative (p,q) growth with respect to at least any one of g1 or ga;
(ii) fo is of regular relative (p,q) growth with respect to at least any one of g1 or
925

(7i1) f1 and fo satisfy Property (X); and

(iv) g1 and go satisfy Property (X).
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Theorem 12. Let f1, fa, g1 and g2 be any four entire functions of two variables.
Also let g1 - g2, g1 and go satisfy the Property (R). Then,

AP (f1 - f2) = minfmax{APD (1), \PD(f2)}, max{ABD (1), AP (f)}],

when the following four conditions hold:

(i) At least f1 or fo is of regqular relative (p,q) growth with respect to g1;
(13) At least f1 or fa is of regular relative (p,q) growth with respect to ga;
(#i1) f1 and fo satisfy Property (X); and

(iv) g1 and go satisfy Property (X).

Theorem 13. Let f, g and h be any three entire functions of two variables such
that 0 < /\gn’q)(f) < pglm’q)(f) < oo and 0 < /\gm’p)(g) < pglm’p)(g) < oco. Then

)\(mﬂ)

A0 (f) . (f) p2(f)
gy SN S S A () j
(m,q) (m,q) (m,q)
(f) py, " (f) , e (f)
= ma {Ai‘i’”’f’) (9) p}(lm’p) (9) } <) < A?"’”’) (9)

Proof. From the definition of pgp ’q)( f) it follows for all sufficiently large values of
71,79 that
My(riyrs) < My(explP=1(logt=1) py) o P 074), (15)
explP~ 1 (loglt= 1 ) (0P (H+2))
and for a sequence values of rq, 7y tending to infinity we obtain that
My(ri,ra) > My(expl ™) (log!t~ 1) 63797, (16)
explP—U (loglt =1 7y (0 (=€)

Similarly from the definition of )\E,p ’q)( f), we have for all sufficiently large values
of r1, 7y that

Myg(ri,re) > Mg(exp[pfl](log[q_l]rl)(Agp’Q)(f)*E), (17)

U ) AT ()=9))

explP~(loglt= 1 1,)

and also for a sequence values of 71,7 tending to infinity that
My(ri,rs) < M, (expl~") (1ot ) 6" (1), (18)
explP—1 (log[q—ll ,,2)(/\_57”’“’(f)+6))_

m,p)
1

Further from the definition of p;
of 1,7y that

M,(r1,r) < Mh(exp[mfu(log[p—uT1)<p§ﬁ"”)<g>+e>7 (19)

expl™U(loglP~1] r2)(ﬂ§f"’p) (9)+2))

(g) it follows for all sufficiently large values

and for a sequence values of rq, 7y tending to infinity we obtain that
My(ry,ra) > My( expl™ 1 (log[p_l] rl)(P;m'p)(g)*a)’ (20)
exp™ 1 (loglP~Y T2)<p§fm<g>—s>).
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Likewise from the definition of /\zm’p ) (g) it follows for all sufficiently large values
of r1,ry that

My(r1,m2) > My (exp™ 1 (log~! )" 9)=e), (21)
expl™ =1 (1oglP~1 rg)("zm'p)(g)—s))
and for a sequence values of rq, 7y tending to infinity we obtain that
My(ri,r2) < Mh(exp[m_l] (log[l’*l] Tl)(/\imm)(g)ﬂ)’ (22)
expl™ = (loglP1! 7“2)()‘1(17”’?)(9)-5—6))_

Now from and in view of we get for all sufficiently large values of rq, 79
that
(m,p)

My(ri,ra) < My (expl™ U(logli—! rp ) (P D+ (0™ (9)+e),

expl™ 1 (logle=1] TQ)(pgp"”(f)+6)(p§;"”’)(g)+s))_

Since € > 0 is arbitrary, we obtain

o) < PO o )

L o)
- (m.p)
Pn (9)

Similarly from and in view of , for a sequence values of rq, ry tending to
infinity, we get that

ie., pP(f) . (23)

My (ri,ms) < My(expl™ " (loglt™ )R @) ),
)

expl™ 1 (loglt=1 rp) ALV N+ (9)+9)).

Since € > 0 is arbitrary, we obtain

(m,q)
A ) (24)
Ph . (g) !

Analogously from and , we get that
S A
A (9)

Likewise from and , it follows for all sufficiently large values of 71,79
that

PO () . (25)

My(ri,rs) > My (expl™ 1 (loglt™! )05 (D=0 0)=2),

expl™1(logle~] T2)<Agf”q>(f>fe>@;’”’>(g%e)),
Since € > 0 is arbitrary, we obtain

D)2 AP (S) A )

(26)
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Moreover from and in view of it follows for a sequence values of 1,79
tending to infinity that
My(ri,ra) > My (expl™ U (loglt=py) X5 (H=2)(e) W @)e)
expl™ =1 (1ogla=1 1y AT (£ =€) ()™ ’”(g%s)).

Since € > 0 is arbitrary, we obtain

(m,q)
(p,a) Ph (f)
o < B (27)
Similarly from (16) and (21)), we get that
(m,q)
(p,q) Ph (f)
pgV(f) < . (28)
9 )\(m p) (9)

Hence the theorem follows from ([23| @ . ., @, and ( . O

(m,q)
Remark 4. From the conclusion of Theoreml, one may write p(p’q)(f) = Lo )

(m,p)
Py (9)
)\(m a) m, m, , A(m)
and )\(gp’q (f) = (m,p)(f) when )\2 P) (9) = g p)( ). Similarly p(p Q)(f) = ’gm,p)(f)
Aéz )(9) AL (9)
m,q m, m,
and /\ép’q) (f)= Z;}"”p)g; when )\2 Q)(f) = P;L Q)(f).

3. RELATIVE (p, q)-TYPE

Next we intend to find out some theorems of relating to relative (p, ¢)-th
type and relative (p, ¢)-th weak type of entire functions of two variables with respect
to another one taking into consideration of the above theorems.

Theorem 14. Let fl, f2, g1 and go be any four entire functions of two variables.
Also let p(p q)(fl) ,og1 (fg) pg q)(fl) and p (fg) be all non zero and finite.

(A)If p$ P (f:) > o (f;) for i, j = 1,2 and i # j, then
(p7q)(f1 + fo) = a(p’q)(fi) and E§€7Q)(f1 + fo) = ngf’q)(fi)-

(B) If p(p’q (fr) < pg’q)(fl) with at least fy is of reqular relative (p,q) growth with
respect to g; fori, j = 1,2 and i # j, then

aéfi)gg (f1) = U(P q)(fl) and Ugi)gz(fl) — Eé’f’(”(ﬁ).

(C) Assume the functions fi1, fo, g1 and g2 satisfy the following conditions:

(7) pf,f q)(fl) < pg’; q)(fl) with at least f1 is of regular relative (p,q) growth with
respect to g; fori=1,2, 5 = 1,2 and i # j;

(44) pé’f ) (f2) < pgfj q)(fg) with at least fa is of regular relative (p,q) growth with
respect to g; fori=1,2, 5 = 1,2 and i # j;

(vit) pézl)’q)(fl) < p(p q)(f]) and p(p’Q)(fi) < pég Q)(fj) hold simultaneously for i =
1,2, j=1,2 and i # j;

() () = maxlmin (1), 2 1)), minp (o), 42 ()] | Lom =
1,2;

then we have

oPl (fi £ f2) = o PO(f)) and TP (fi £ fo) = TPO(fy).
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Proof. From the definition of relative (p, ¢)-th type and relative (p, ¢)-th lower type,
we have for all sufficiently large values of 1,7y that

My, (ri,m2) < My, (expl?= (00D (fi) +£)(log=1 7)),
_ (p,a)
explP U (09 (f1,) + ) (logle— )i i)y (29)

My (r1,r2) > My, (exp (@D (fi) = £)(1oght ) )50,
— (p,q)
eXP“"”«Eéi”q’(fk) —&)(log!t™rg) i ")), (30)

logP—1] s
t.e., Mg (ri,r2) < Mf,c(exp[q*” ((og)—rl> oD (1)
(EgzzW (fk) —¢)

[p—1] -1
eXp[qil] ( (IOg)p 1) ) ﬂgm(fw )7 (31)
@5 " (fr) —€)

and for a sequence of values of r1, 7, tending to infinity, we obtain

— _ (p,q)
My, (r1,7m2) > Mgl(eXp[p 1]((05(75),q)(fk)_5)(10g[q Uy yPor (fk))

exp? (oD (fr) — £)(loglt™ 7y )pﬁfl’ ”(fk)))’ (32)
. Ly log? e
i.e., Mg, (ri,r2) < Mfk(eXp[q 1] (W) iR
l
p—1] .
expli1l ((log)”—rz) R, (33)
(090" (fr) =€)

and
My, (r1,ra) < My, (expl (@) (fi) +2)(loglt= T ry) " (0,
_ (p,q)
expP~1 ]((Fgf’q)(fk) + &) (loglt ™1 py)Par’ (fk,)))’ (34)
where € > 0 is any arbitrary positive number, k =1, 2 and | =1, 2.

Case I. Suppose that p(p’q)(f ) > pg’i’q)(fg) holds. Also let (> 0) be arbitrary.
Now in view of (2 ., we get for all sufficiently large values of r1, 79 that

_ (p,q)
Myap,(risra) < My, (expP™ (0@ (f1) + &) (loght ™1 ry) 7™ ),
explP (0P (1) + £)(loglt ™V )8 1)) 5 (1 4 A)35)
where A =

My, (expl?~ (o2 (f2)+) (logl? " > ) expl (0D (12) ) loglt= a5 U2))) and

My, (explo=1 (082 (1)) (ogla=1 r )85 " (1)) explo=1) (o) (1) +2) (loglt =1 7)1 (1))
in view of p(p Q)(fl) > pgf ) (f2), and for all sufficiently large values of 71,73, we
can make the term A sufficiently small. Hence for any o = 1 —|— €1, where e; = A,
we get in view of Theoreml p(p ) (f1) > pgfi’q (f2) and from for all sufficiently

large values of rq, 79 that
_ _ )
Mf1if2 (Tl, TQ) < Mgl (exp[p 1 ((o.!(]ZlJ,q) (fl) + 5)(10g[q U )Pg‘i N (flih))
exp® (@D (f1) + &) (loglt ™ 7y )Pun Q)(flifZ))) X Q.
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Hence making o — 1+, we obtain that

p’q (fitf2) < U(p’q)(fl) (36)

Now let f = fi+ fo = fi = (f £ fo). Since pV(f1) > pi?(f2), from
above a(p’Q)(f) oV (fL £ f) < oPD(f1). Also in view of Theorem [2| and
PPV (1) > pPD(f,), we obtain that p?(f) > pZV(f,). Hence in view of
(36) o (f1) < oLV (f) = oLV (f1 £ fo). Therefore oy ?(f) = ot ?(f1) =
oD (f, + fy) = o ().

Similarly, if we consider p(p ’q)( fi) < png’Q)
that o 29 (f1 + fo) = o9 (f2).

(f2), then one can easily verify

Case II. Let us consider that p (fl) > p,(fl’ Q)(fg) holds. Also let (> 0) be
arbitrary. Now there exists a nondecreasing sequence 7y, r; — 00; ¢ = 1,2 as
p — oo such that from and we get

_ — _ (p.q)
Myspy(r1p.rap) < My, (expP H(GEPD(f1) + ) (loglt ™ ryy )P 1)),
explP(@PD(f1) + ) (logl? 1y, Yo () )) x (1+ B37)

where B = S -

M, (explp—l]((( (p Q)(f2)+€)(10g[q—l] T1p Mg p'q (fz)) exp p—ll(( (p q>(f2)+s)(log[q_1] rzp)ﬂgll)’q (fz)))
My, (explp= 1]((0““ “><f1>+e><1ogq )28 O0) expla- 11((0“ D (1) +e)(logla—1 1y, " D))
and in view of p(p ) (f1) > pé’l’ q>(f2), we can make the term B sufficiently small

by taking p sufficiently large and therefore using the similar technique for as exe-
cuted in the proof of Case I we get from that ngf’q)(ﬁ +f)=0 f’q (f1) when

PP D (1) > pPD () hold. Similarly, 1f we consider p&? (f1) < p2?9(f,), then

one can easily verify that a(p’q)(f 1 £ fo) = aé’l”q)( f2). Thus combining Case I and

Case II, we obtain the first part of the theorem.

Case III. Let us consider that p(p’q)(fl) < pgg’q (f1) where at least f; is of regular
relative (p,q) growth with respect to go. Therefore there exists a nondecreasing
sequence {rip}, rip — 003t = 1,2 as p — oo such that in view of and (33)), we
obtain that

log[p T1 e o)
My, +4,(r1p,m2p) < Mfl(exp[q 1]( (p q) 'd ) ()
( (f1) —e)
[g—1] 7“2p (p, q)(f ))
exXp ( (o (M) - ot (1+C), (38)

Mo (expla=11 (0P rp ) o ")(h) expla—1] _toglP iy ) LB D (g q)(fl)
f1 p (& (pq)(f Y—e) p (P, q)(f) o
992 1 (Tgq 1

b
oglP—1] (p,q loglP—11 - (p,q)
M [q—1] ( log ip )ﬂg1 (fl)) [q—1] ( L) 2p )Pgl (f1)>
i1 (exp (@B D (51)-2) P (52D (51 —2)
since pé’i"”( fi) < pg’q)( f1), we can make the term C sufficiently small by taking p
sufficiently large. Hence for any o = 1 + €1, where £1 = C, we get from (38) and

where C = and
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Theorem @, for a nondecreasing sequence 7, r; — 00; ¢ = 1,2 as p — oo that

Ly loglly IR
M‘?ligz (T1p7r2p> < Mﬁ (exp[q 1 (glp)) (f1)
e

) 91t92
(Ugllj’q (f1) —
[p—1] o
expl—1] (log”—%> T x
(o (f1) —e)
Hence, making o — 14, we obtain that

aPD (f1) = PO (f). (39)

Now let g = g1+g2 = g1 = (g% g2). Since p(p’Q)(fl) <p Z’Q)(fl) and at least
f1 is of regular relative (p,q) growth with respect to g, from above U(p’Q)(fl) =

;’Zﬁ;z (f1) > 0' (P-0)(#,). Therefore in view of Theoremand p(p’q)(fl) < pg’Q)(fl),

we obtain that p( )(f ) < pg,z q)(fl) as at least f1 1s of regular relative (p, ¢) growth

with respect to go. Hence in view of 7 Ugl (fl) > aépq (f1) = Jfffizm (f1)-

Therefore o(p’Q)(fl) = p’Q)(fl) = Uéfgn (f1)= 05(11177Q)(f1)-
(p,9)

Similarly if we consider p(p q')(fl) > pgo (f1) with at least fy is of regular

relative (p, q) growth with respect to g1, then Ué};ﬂ]z (fr)= Uffz’ q)(fl).

Case IV. In this case suppose that p(p q)(f ) < pgz q)(fl) where at least f; is of
regular relative (p,q) growth with respect to g2. Hence from ( ., we get for all
sufficiently large values of r1,ry that
-1
log" !l ) oS ‘”(m
(p,q) (1) —¢)

_ 7"2 (P q)
expla—1l ( P ) m)) 1+ D), (40)
@ (1)
1
M expla—1] logP—1] ry (p q>(f1 ) expla—1] loglP—1] 1y, (p q)(fl)
i @B o) @2 (r)-e)
92 1 999 1
My (exp[qfll (m) ﬂgfi q (f1) ,expla—1] ( loglP—1] ry ) péﬁ’”(fl))
! @D (f1)—e) @D (1) —2)
in view of p(p q)(fl) < pgz q)(fl), we can make the term D sufficiently small by

taking 71, ry sufficiently large and therefore using the similar technique for as exe-

cuted in the proof of Case III we get from that J(fi?% (fr)= Jéf q)(fl) where

pg’Q)(f ) < ng (fl) and at least f1 is of regular relative (p,q) growth with re-

Mg, 1g,(T1p,72p) < Mfl(exp[q 1]((

where D = and

spect to go. Likewise if we consider pg (p.q) (f1) > pg’q)(fl) with at least f; is of

regular relative (p, ¢) growth with respect to g1, then ngl)’iqu (fr) = ag’q)(fl). Thus
combining Case III and Case IV, we obtain the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem [5] and

the first part and second part of the theorem. Hence its proof is omitted. O

Theorem 15. Let f1, fo, g1 and 92 be any four entire functions of two variables.
Also let /\gf’q)(f ), )\(p’q)(fg) p’q (f1) and Ag’;"’ (f2) be all non zero and finite.
(A) If )\(gp’q (fi) >Ny ) (f5) wzth at least f; is of regular relative (p,q) growth with
respect to g1 fori, j = 1,2 and i # j, then

T (fr £ fo) =7 V(f) and TR (fr £ fo) =TED(S)
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(B) IF APV (1) < A\PD(f1) fori = j = 1,2 and i # j, then

Torky, (1) = 700 (1) and 724, (1) = 780 (o).
(C) Assume the functions f1, f2, g1 and go satisfy the following conditions:

(1) )\gf’q)(fi) > )\!(lenq)(fj) with at least f; is of regular relative (p,q) growth with
respect to q1 for z,] =1,2 and i # j;

(7)) A p’q (fi) > p’q (f;) with at least f; is of reqular relative (p,q) growth with
respect to go for 1, j =1,2 and i # j;
(7it) )\gf’q)(fl) < /\_Ef;’q)(fl) and )\gf’Q)(fg) < )\gg’q)(fg) hold simultaneously for i,
i=12andi#j;
(A" (1) = minfmasx{AG? (1), A (f) o max{AE” (£1), AL 7 (f2)}] | 1m =
1,2;
then we have

Torly, (FLt fo) = 70 (fy) | Lm = 1,2
and

gf’iqgQ(flifﬁ—T (f) [ 1,m =1,2.

We omit the proof of Theorem [15 as it can easily be carried out in the line
of Theorem [14l

Theorem 16. Let f1, fa, g1 and g be any four entire functions of two variables.
(A) The following condition is assumed to be satisfied:

(i) Either oV (£1) # oD (f2) or e8P (f1) £ 75D (f2) holds, then
P (fr# f2) = pRD(F1) = i (f2).

(B) The following conditions are assumed to be satisfied:

(i) Bither o (f1) # o2V (f1) or a9 (f1) # 58P (f1) holds;
(1) f1 is of regular relative (p,q) growth with respect to at least any one of g1 or
ga, then

Pt (f1) = PR () = o7 ().

Proof. Case L Suppose that i (f1) = pii? (f2) <0<p"’ D(fr), pe? (f2) < 00).
Now in view of Theorem [2[ it is easy to see that pél (i £ f2) < pél’Q)(f ) =
PP (£,). Tf possible let

PP (fr+ f2) < PO (f1) = p2 (fa). (41)

Let o*,(ff’q)(f ) # cr(p’q)(fQ). Then in view of the first part of Theorem
and we obtain that o{¥"? (f,) = Ugf’Q)(fl + o F ) = oD (f2) which is a

contradlctlon Hence p? (f1 + f2) = p2V(f1) = p?(f,). Similarly, with the
help of the ﬁrst part of Theorem one can obtain the same conclusion under the

hypothesis & O’ ( fi)#o O’ ( f2). This proves the first part of the theorem.

Case IL Let us consider that p? (f1) = p? (£1) (0 < pZV(f1), p? (1) < 00)
and fi is of regular relative (p,q) growth with respect to at least any one of g; or

g2 and (g1 = 92) Therefore in view of Theorem (4] it follows that pgj ’i)gz (fr) >
pf]ll”q)(f ) = pg’;’q (f1) and if possible let

Pt (1) > o0 (£1) = o2V (). (42)
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Let us consider that a(p D(f f1) # a(p Q)(f ). Then in view of the proof of the
second part of Theorem [14{ and l) we obtain that o 27 (f,) = U;I:ﬁzvﬁgz(fl) =

o{PD(#,) which is a contradiction. Hence pgfi)%(f) = pPD(f) = pPD(f)) .

Also in view of the proof of second part of Theorem [14] one can derive the same

conclusion for the condition J(p Q)( f1) # a(p 9 (f1) and therefore the second part of
the theorem is established. g

Theorem 17. Let f1, fo, g1 and g2 be any four entire functions of two variables.
(A) The following conditions are assumed to be satisfied:

(2) (f1 £ f2) is of reqular relative (p,q) growth with respect to at least any one of g1
or ga2;

(ii) Either o™ (f1 £ f2) 7 cr(”’q’(fl + fo) or TV (fu £ o) £ T (L £ fo):
(i) Either o3 (o) # 031"} (£2) or 7" (1) # 73 (£2):

(10) Either o (£1) # o2 (fa) or 54 7(1) £ 58 (Fa); then

Pios (L2 f2) = o0 (1) = o (f2) = o5 () = P2 () -

(B) The following conditions are assumed to be satisfied:
(1) f1 and fo are of regqular relative (p,q) growth with respect to at least any one of

g1 0T g2;

(i) Bither ogfﬁ;(fl) + a§f£;2<f2> or og’;’i;( fi) # *§€i1,2<f2>,-
(i) Bither ot (f1) # ot (f1) or ") (1) # 762 ()

(iv) Bither o (f2) # oV (f2) or 787 (f2) # T (fo); then

Py (Fr £ f2) = PO (1) = 0 (f2) = pgzv”(fl) =P (f2).

We omit the proof of Theorem [17] as it is a natural consequence of Theorem
110l

Theorem 18. Let f1,f2, g1 and go be any four entire functions of two variables.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of f1 or fo is of reqular relative (p,q) growth with respect to

g1
(id) Bither 70'? (1) # 750 ? (f2) or T (f1) # T ? (f2) holds, then

)\g’q)(ﬁ + fo) = )\_E;II’Q)(fﬁ = )\(ng’Q)(fz) .

(B) The following conditions are assumed to be satisfied:

(1) fi, g1 and g2 be any three entire functions such that )\gf’q)(fl) and )\_g’;’q)(fl)
exists;
(ii) Either 7"V (f1) # 78D (f1) or 78D (f1) # 7LD (f1) holds, then

AP (1) = ABD(f1) = XED(fy) .

Proof. Case I. Let AP (f1) = AP (f2) (0 < APP(f1), AP (f2) < 00) and at
least f1 or fo and (fi £ f2) be of regular relative (p,q) growth with respect to g;.

Now, in view of Theorem [1] it is easy to see that APV (f; + f) < AP9 () =
)\gf’Q)(fg). If possible let

APD(fr £ f2) <ALV (f1) = APV (fa) - (43)
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Let Téf’Q)( # Téf q)( f2). Then in view of the proof of the first part of
Theorem [15{ and (43| we obtain that 72V (f1) = 7PV (fy £ fo F fo) = 7PV (f2)
which is a contradictlon. Hence A2V (fy + f,) = AP (f1) = ALD(f,). Similarly
in view of the proof of the first part of Theorem [I5] one can establish the same
conclusion under the hypothesis T(p ’q)( f1) # T(p ’q)( f2). This proves the first part
of the theorem.

Case II. Let us consider that ,\_Efj*q) il) = )\Ef;’q)(fl) (0 < Ag’l’”)(fl)7>\§€’q)(f1) <

it follows that A9 (f1) > A§‘§”">(f1) =

00). Therefore in view of Theorem o1k go

ALD () and if possible let

APD (f1) > ABD(f) = APD(f) (44)

Suppose Téf Q)( fi1) # 71 (. q)( f1). Then in view of the second part of Theorem

and , we obtain that T(p Q)(fl) = ;ff;ﬂgz(fl) = Téf q)(fl) which is a

contradiction. Hence A;’l”i)gz (fr) = )\g’f’q (f1) = Ng (p.a) (f1) . Analogously with the
help of the second part of Theorem [. the same concluaon can also be derived

under the condition 7 (. q)( f1) # ’7' “D(f1) and therefore the second part of the
theorem is established. g

Theorem 19. Let fy, fo, g1 and g2 be any four entire functions of two variables.
(A) The following conditions are assumed to be satisfied:

(i) At least any one of f1 or fa is of regular relative (p,q) growth with respect to g
and gs;

(id) Bither 7 (f1 £ f2) # TV (f1 £ f2) or TEV(f1 £ fo) ATV (f1 £ fo);
mwmmw£Wm¢#“w»wélw>¢N”m>
() Bither T8 (f1) # sl (f2) or TRV (f1) #7829 (fo); then

Moy (Fr £ f2) = MPD() = AR (f2) = MED (1) = AL (fo) -
(B) The following conditions are assumed to be satisfied:
(1) At least any one of f1 or fo are of regular relative (p,q) growth with respect to
g1 £ g2;
(i1) Fither T(f£z2(f1) £, gf’fﬂ (f2) or Tgf’i)gz(fl) # Té’;iih (f2) holds;
(iii) Either 7tV (f1) # 7 (f1) or 7 (f1) £ 7527 (1) holds;
() Bither 779 (f2) # 7887 (f2) or 78D (f2) # 7L (f2) holds, then

Nr Ly (F1 2 £2) = AR (1) = AL (f2) = AED(Fr) = AL (f2)

We omit the proof of Theorem [I9]as it is a natural consequence of Theorem

s

Theorem 20. Let f1, fo, g1 and g2 be any four entire functions of two variables.

Also let p? (f1), pS (f2), P2 (f1) and p%:?(f2) be all non zero.
(A) Assume the functions f1, fo and g1 satisfy the following conditions:

(1) g1 satisfies the Property (R) and
(i) f1 and fo satisfy Property (X); then

D(fy - f2) = oPD(f;) and TPV (f1 - fo) =TPD(f;).

(B) Assume the functions g1, g2 and f1 satisfy the following conditions:
(1) f1 is of regular relative (p,q) growth with respect to at least any one of g1 or ga
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and fy satisfy the Property (R) and
(ii) g1 and go satisfy Property (X); then

o P (f1) = PO (f1) and T (f1) =TPD(fy).

(C) Assume the functions f1, f2, g1 and go satisfy the following conditions:

(1) g1 g2, f1 and fo satisfy the Property (R);

(13) f1 and f2 satisfy Property (X);

(#i1) g1 and go satisfy Property (X);

() f1 is of regular relative (p,q) growth with respect to at least any one of g1 or

92;
(v) fo is of reqular relative (p, q) growth with respect to at least any one of g1 or gs;

(vi) pE?(f1) = max(min{pE? (f1), p& P (f1)}, min{ o ? (f2), oL (f)}] | Lm =
1,2; then

oD (1 f2) = o) and TR (fr - f2) = O (f1).

Proof. Case 1. Suppose that pé’;’q)(f ) > pgf Q)(fg). Also let g1 satisfies the Prop-
erty (R). Since My, .7, (r1,72) < My, (r1,72) - My, (r1,72), we have from for all
sufficiently large values of r1,ry and for any arbitrary € > 0 that

— 3 _ (p,q)
My, g, (r1,m2) < (Mgl(exp[zv 1]((05(]1177q)(f1)+§)(10g[q 1] r)Pon (f1))

B e _ (p.q)
exp[p 1]((0511741)(1’1) + 5)(1Og[q 1] rQ)qu (fl)))) (45)

o2 (f1)+e

Let bserve that d; :=
et us observi 1 aé’i’q)(fl)"r%

> 1 which implies

exp[p—2] (G—S(]f’q) (fl) + 5) [log[Q*l] ri]P‘Eg’Q) (f1)
explp—2] (Ug(;lf’q)(ﬁ) + %)[log[q_” Ti]pﬁf{"’)(h)

= J(say) > 1, (46)

where i =1, 2.
Since g; satisfies the Property (R), in view of Deﬁnition Theorem |8 and
we obtain from for all sufficiently large values of 71,75 that

_ € _ (p,a) J
Mppp(riirs) < My (P09 (f1) + S)(logl ™ )i 00) ),

_ 9 _ (P.a) (£,
(expl (ot (1) + 5)log )5 1)) )

— _ (P,a) (£ .
€., Mfl'fQ (7‘1, TQ) < Mgl (exp[p 1]((05(]:[17’(1) (fl) + 5)(10g[q U 7Al)pgl (i fz)),
expPU (0P (f,) + ) (loglt—! T2)p§,’j"”(f1-f2))>.

Hence we obtain from above that

opO(fr - f2) < op D (). 47)

Now we establish the equality of . Since f; and fo satisfy Property
(X), of course we have Mjy,.5,(r1,72) > My, (r1,72) for all sufficiently large values
of r1,79. Therefore from the definition of relative (p,q)-th type, we get for all
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sufficiently large values of r1,ry that
My, (r1,7m2) < My, .4,(r1,72)
< M, (exp[p_l]((ag7q)(f1 - f2) + £)(loglt Y rl)p_i,‘; Q)(fl))’

exp? U((a P (fy - f2) +¢)(loglt ™! ro)PSh ‘”(h)))

So oV (fi - f2) = o (f1). Hence o'V (fy - fo) = oé’f’q (f1). Smilarly, if we
consider p(p”)(f ) < pé’;’q)(fQ) then one can verify that oy (p.q) (f1-f2) = agf’Q)(fg).

Case II. Let p(p’Q)(f ) > pgff’q (f2) and g; satisfies the Property (R). Now for any
arbitrary € > 0, like Case I, we have from and for a sequence of values of
r1, 79 tending to infinity that

— | () (£,
My,.,(r1,ma) < (Mgl(eXp[p @R (f1) + )(log[q Uipp)eat ™ (),

explP U ((@®9 (1)) + )(log[‘l—” ro)P8n " (f1 ))))

Now using the similar technique for a sequence of values of rq,ry tending
to infinity as explored in the proof of Case I, one can easily verify from above that

agf"” (fi-fo) = ag’q)( f1) under the conditions specified in the theorem. Similarly,
if we consider p"? (f1) < p*?(f,), then one can also verify that 72 (f, - f2) =
iﬁfi"”( f2). Therefore the first part of theorem follows from Case I and Case II.

Case III. Let f; satisfies the Property (R) and p(p q)(fl) < pq]; q)(fl) with f; is
of regular relative (p, q) growth with respect to at least any one of g1 or gs. Since
My, .g,(r1,m2) < Mg, (r1,72) - Mg, (r1,72), we have in view of and for a
sequence of values of r1, 79 tending to infinity that

log? r N\ mas
Mg, .g,(r1,7m2) < (Mf (exp[q_l] (—) pay 1)
N 1 () - 5)
exple-1] (bg“””w)wm)y -
P (p,q) _ e :
(Ugl (fl) 2)
N TRV ()5 e
ow we observe that §; := —% D). > 1, which implies

[q_2] (( ]Og[lﬂ—l] i )W)
exp (051;34)(f1)7€)
1
_ loglP—1 r; (p,q)
eXp[q 2] ((4(2%;(]61)7“_%)) Pgli q (fl))
where i = 1, 2.

Since f; satisfies the Property (R), in view of Definition |8| Theorem [10| and
we obtain from for a sequence of values of rq, ry tending to infinity that

= d(say) > 1, (49)

-1 1
(log)[p 'y ) p(g‘i’q)m))&,
(057" (f1) = 5)

p—1] .
(eXp[q—l] (W) D (1) >5>

£
2

Mgl‘gz (TlaTQ) < Mfl ((exp[qil] (
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log[p_l

] T
t.e., Mg, .g,(r1,72) < My (exp[qfl] ((pq)—rl) B qg)z(fl)’
(0" (f1) —¢€)

p—1

logP~1! I
expla—1] (;5)—73) p§1,9)2<f1))_
(06" (f1) —¢)

Since € > 0 is arbitrary, it follows from above that

o (f1) 2 oD (f). (50)

Now we establish the equality of . Since g1 and go satisfy Property (X),

of course we have My, ., (r1,72) > Mg, (r1,72) for all sufficiently large values of

r1,72. Therefore from the definition of relative (p, ¢)-th type we get for a sequence
of values of r1, 79 tending to infinity that

Mgl(T17r2) < Mg1-92(7’177‘2)

1) |
< My (exp[q—l]( log™™ "1y )pé’{"“(h)
! (p,a) _
(091795 (f1) — €)
expld—1] (bg[pl]w) ng‘i’ql)(fl))
(o575 (f1) —2)

So oV (fy) > oP2(f1). Therefore o0 (f1) = ag’q)(fl) Similarly, if we

consider p*? (f1) > p&?(f1), then one can verify that o.2:%) (fl) = o2 (1).

Case IV. Suppose fi satisfies the Property (R). Also let pg1 (fl) < pé’; q)(f )
with f1 be of regular relative (p,q) growth with respect to at least any one of ¢y
or go. Therefore like Case I and in view of , we obtain for all sufficiently large
values of 1,79 that

logP—1 —a
Mo < (it o (o0
(091 (fl) - 5)

[p—1] 1
explt—1 ((bg)—W) I ))2.
@4, (f1) — 3)
Now using the similar technique for all sufficiently large values of rq,ry as

explored in the proof of Case III, one can easily verify that ag’f’gl (fr) = E_Sff’q)(fl)

under the conditions specified in the theorem. Likewise, if we consider p(p ’q)( f1) >

pEQ (f1) with at least f1 is of regular relatlve (p, q) growth with respect to g;, then

one can verify that agl A ( f1) = 092 ( f1). Therefore the second part of theorem
follows from Case III and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out
in view of Theorem [[1] and the above cases. (]

Theorem 21. Let f1, fo, g1 and 92 be any four entire functions of two variables.
Also let Ag’l”Q)(fl), )\f]’;’q)(fg) (fl) and )\ffz’q (f2) be all non zero and finite.
(A) Assume the functions fi, f2 and g1 satisfy the following conditions:

(1) At least f1 or fo is of regular relative (p,q) growth with respect to g1 and g1
satisfy the Property (R) and

(ii) f1 and fo satisfy Property (X); then

7 (fu- fo) = 70D (fe) and 7D (fr- fo) = 7RO (fo).
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(B) Assume the functions g1, go and f1 satisfy the following conditions:
(7) f1 satisfies the Property (R) and
(ii) g1 and g2 satisfy Property (X); then

T8 (f1) = TPO(f1) and TR (f1) = TLD(fy).

(C) Assume the functions f1, f2, g1 and go satisfy the following conditions:

(1) g1 - 92, f1 and fo are satisfy the Property (R);

(i1) f1 and f2 satisfy Property (X);

(#3i) g1 and g2 satisfy Property (X);

(iv) At least f1 or fa is of regular relative (p,q) growth with respect to g1 for i =
1,2,j=1,2 and i # j;

(v) At least f1 or fo is of regular relative (p,q) growth with respect to go fori =1,
2,5 =1,2 and i # j;

(vi) AL (fy) = minfmax{ ALY (£1), AT (£2) 1, max{AED (£1), AP (f2)}] | 1, =
1,2; then

T (1 fo) = TPOf) and TR (1 - f2) = TEO(fy).

We omit the proof of Theorem [21] as it is a natural consequence of Theorem
20

Theorem 22. Let f, g and h be any three entire functions of two variables such
that 0 < p,(lm’q)(f) < o0 and 0 < )\ ’p)( ) < p% ’p)(g) < 00. Then

max{(@“*]”)m,(d’“)(ﬁ)wf%}

7 (g) 7" (g)
(m,q) N
o N\ o
< oI(f) < “‘wi ;)ph “.
o}, g

Proof. Let us consider that (> 0) is an arbitrary number. Now from the definitions
of O’ép’q)(f) and & *(p q)(f), we have for all sufficiently large values of r1, 7o that

My(ri,ra) 1 My(exp® U (0PD(f) +&)(loglt U ry ) D), (51)
expl? (o0 (1) + £) (10"~ 28”710,

My(ri,ms) o My(exp?=H(@PD(f) - 2)(loglt = )" (D), (52)
— — — (p,q
exp?(FPD(f) — &) (loglt ™ 1) ’(f))),
and also for a sequence of values of r1, 79 tending to infinity, we get that
_ — (p.q)
My(ri,ra) i My(exp? (0P (f) — &) (loght ™ ry)rs" " (1), (53)
_ — (p q)
explP 1]((J£(]p,q)(f) _5)(10g[q 1] 1) (f)))

My(ri,ra) 1 My (exp? V(@0 (f) + &) (loglt r )25 D), (54)
explP~ (@R () + £)(logls™1 7AQ)/)ﬁ,"'“’(f))).
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(m,p) (mJJ)(
h h

Similarly from the definitions of o (g9) and @ g), it follows for all sufficiently

large values of rq, 7y that
m _ (m,p)
My(ry,r2) i My (expt (0™ (g) + &) logl? T )ri™ " (9)) - (55)
m _ (m,p)
eXp[m—l]((o_}(L ’p)(g)—i—e)(log[p 1] Tg)Ph (g))).

— —(m — (m,p)
My(r1,m2) & My (expt™ (@) (g) — ) (log?ry)7" (@), (56)
— —(m, — (m,p)
e (@]" 7 (g) — ) (log? )",
Also for a sequence of values of r1, 79 tending to infinity, we obtain that
— m _ (m,p)
My(ri,ra) ¢ Miu(exp™ (0} (g) = &) (log?~r)»"™"9), - (57)

(m,p)

eXp[m—l] ((ai(Lm’p) (g) _ E) (log[lﬂfl] ,,a2)Ph (9)))7

m _ (m,p)
Moy(ri,ma) i My (exp™ (@™ (g) + &) (log? M )" (@), (58)
(m,p)

exp[m—l]((ﬁgmvp)(g)+€)(10g[P—1] T9)Pr (g)))_

Further from the definitions of 737?(f) and 7&? (f),we have for all sufficiently
large values of r1, 75 that

— — (p,q)
My(rir) i My(exp (0 (1) +e)(loght ™ m)N ), (59)
exp? (7P (£) + ) (loglt rp) D)),

Mi(riora) ¢ My(exp D(FPO () = &) (logt ™ r) ¥ 0), - (60)
exp? I (FPD(f) = ) (logt ™! D)),
and also for a sequence of values of r1, 79 tending to infinity, we get that
M(riora) ¢ My(exp (P9 () = &) (logt ™ r)¥0), - (61)
expl (779 (f) — €)(loglt ™Y rp) D)),

My(ri,ra) 1 My(exp® U(FPD(f) +e)(loght U r N D) (62)
_ _ _ (p,q
exp (TP () + )(log ™ 7)),

Similarly from the definitions of 7" (g) and 7\ (g), it follows for all sufficiently

large values of r1, 79 that
m _ (m,p)
M,(ri,ma) i Ma(exp™ (7" (g) + &) (logl? L r )M @), (63)
_ (m,p)
exp™ (7" (g) + £)(log P ) 9))),

My(ri,ra) o Ma(expl™ (" (g) = )(log? M r)M" @), (64)
exp™ (77 (g) = ) logh~ ra) ")),
Also for a sequence of values of r1, 72 tending to infinity, we obtain that
My(ri,ra) o Ma(exp!™ (™ (9) = )(log? )™ @), (65)
expl™ (77 (g) — &) (logP ) M ),
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My(ri,m2) | Mh(exp[m 1]((7',:7”0)( )—i—s)(log[p*l] rl)’\(ftm’p)(g)), (66)
m _ (m,p)
exp[m—l]((f( ,P)( )—l—E)(log[p 1, )/\h (9)))
ph O ( ) <~ (9
Since in view of Theorem N (g) 2 > pgd Y (f), we get from | 1) and 1 ) for all

sufficiently large values of 1, 1“2 that
Mf (7’1, TQ)

— m A(mp) P )
< M (expt™ (™ (9) 4+ )0 () + €)@ (10g = kD),

expl™ U (") (g) + ) (0P (f) + )"

Since (> 0) is arbitrary, we obtain

sMO(f) < P (g) (oD (M@

(m.q)

79 (10gla= )i (f)),

(m Q)(f) )
ie., J!gp,q)(f) > ( (mp)( )))\ P(g) ) (67)
Analogously from and (66)), we get that
—(m,q) 1
(p,a) L(f) NG
Ug (f) Z ((md?)( )) h s (68)

)
as in view of Theorem [13| it follows that 2 (m p)((f; > pgp q)(f). Further in view of

Theorem since p?mip)ifi < pg (p.a) (f), we obtain from and for a sequence

of values of r1, 79 tending to infinity that
Mf (T1> TQ)

N o m,p) (m )
> Mh<exp[m 1}((02 P) (9) — 5)(U§p,q)(f) _ 5)ph P (g)(log[q 1] )P a (f))’

. N , (m,p)
exp" (@ (9) =)o PV (f) — )

Since (> 0) is arbitrary, we obtain

i (m,p)
o) = T (PO ()

) (logla=1 )P ‘”(f))).

(m,q) 1
ie., dPD(f) < (if(;mp)(f))pﬁmw(g) . (69)
0y (9)
Thus the theorem follows from , and . O
(m,a) (m,a)
From Theorem it follows that 2?’”";)8)) < pép,q)(f) and i(m Z)g; <

pgp ) (f), therefore the conclusion of the following theorem can be carried out from

and (56)); and respectively after applying the same technique of The-
orem So its proof is omitted.

Theorem 23. Let f, g and h be any three entire functions of two variables such
that 0 < /\gn’q)(f) < oo and 0 < )\}(lm’p)( ) < p(m’p)(g) < 00. Then

o (f) < min { (M) TG (M) ),

) 7" (9)
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Similarly in the line of Theorem [22] and with the help of Theorem [I3] one
may easily carry out the following theorem from pairwise inequalities numbers (62))

and ; and ; and ; respectively and therefore its proofs is

omitted:

Theorem 24. Let f, g and h be any three entire functions of two variables such
that 0 < )\gm"n(f) < pglm’q)(f) < oo and 0 < /\gm’p)(g) < pglm’p)(g) < oo. Then

=(m,q) 1
(Th (f))x,gm"’)@ < ?é(]p,q)(f)

(m,p) =
Th (9)
B " (g) &P (g)

Theorem 25. Let f, g and h be any three entire functions of two variables such
that 0 < pzm’Q)(f) < oo and 0 < /\Elm’p)(g) < pglm’p) (9) < oco. Then

—(m,q) 1 —(m,q) 1
#0(f) 2 maoe { (2 )(f>>p;m»p><g>,(ff?m )<f>)x;m»p><g>}_
I, (g) Th "(9)

With the help of Theorem [I3] the conclusion of the above theorem can

be carried out from , and , respectively after applying the same
technique of Theorem [22] and therefore its proof is omitted.

Similarly in view of Theorem the conclusion of the following theorem
can be carried out from pairwise inequalities numbered and ; and

; and respectively after applying the same technique of Theorem
and therefore its proof is omitted.

Theorem 26. Let f, g and h be any three entire functions of two variables such
that 0 < pzm’q)(f) < o0 and 0 < /\Elm’p)(g) < pglm’p) (9) < oc0. Then

—(m,q) 1
(M)x;’"*”)m < Py
0

IN

—(m,q) 1 (m.q) N

min{ (L ) T (G ) T
a;, " (9) o, " (9)

Theorem 27. Let f, g and h be any three entire functions of two variables such

that 0 < Agm’q)(f) < oo and 0 < )\;lm’p) (9) < p}lm’p) (9) < c0. Then

=(m.q) 1 (m,q) 1
P?(f) < min { (%m p)(f)) AP (lem p)(f)> N )
Ty (9) Ty (9)
(T}(Lm’Q)(f)> pﬁl’"’l")(w (Tgm,q)(f)) p;m’lp)(g) }
7" (o) 7" o)

The conclusion of the above theorem can be carried out from pairwise in-
equalities numbered and ; and ; and ; and
respectively after applying the same technique of Theorem [22| and with the help of
Theorem [I3] Therefore its proof is omitted.

Similarly in the line of Theorem 22 and with the help of Theorem [I3] one
may easily carry out the following theorem from pairwise inequalities numbered
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and (63); and (66)); and respectively and therefore its proof is

omitted:

Theorem 28. Let f, g and h be any three entire functions of two variables such
that 0 < Agm’q)(f) < oo and 0 < )\Elm’p)( ) < p(m’p)( ) < oo. Then

(m,q) 1 =(m,q) N
max { <7h (f)) NN (Th (f)) AP () } < rPa(f)
7" (o) " )

IN

(Tﬁm’q)(f) ) R
v () |

Theorem 29. Let f, g and h be any three entire functions of two variables such
that 0 < /\gn’q)(f) < pEL V() < 00 and 0 < /\Sn’p)( ) < pEL ?)(g) < 0o. Then

(mq) 1 (m,q)
L max{( (m’p)g;) 5]””’)@)7( ’T’)((ch;) “"”’(;;)7
(W) T (W)M},

" (9) " (9)

The conclusion of the above theorem can be carried out from pairwise in-
equalities numbered and ; and ; and ; and
respectively after applying the same technique of Theorem [22[ and with the help of
Theorem Therefore its proof is omitted.

Now we state the following two theorems without their proofs as because
those can be derived easily using the same technique or with some easy reasoning
with the help of Remark [4] and therefore left to the readers.

Theorem 30. Let f, g and h be any three entire functions of two variables such

that 0 < p{™V(f) < 00 and 0 < p\™"(g) (= A{™P)(g)) < 00. Then

f(m,q) 1
( ?m )(f))p;w>(g> <P (f)
Op P (9)

—(m,q) (m,q)
< min { (“{" q><f>) T (cr,(f” q)(f)) ,m;)(y)}

o, " (9) a7 (g)
< max { (szyq)(f)) pim‘l’”(g) 7 (Uém’q)(f)> S ) }

Egm,p) (9) a}(Lm’p) (9)

(m,q)
< aép’Q)(f) < (i}(m p)((fi) RO
o, g

Remark 5. In Theorem if we will replace the conditions 0 < pgbm’Q)(f) < 00
and 0 < p}""(g) (= A" (9)) < 007 by 0 < g™ (f) (= A" () < o0 and
0< p(m’p)( ) < 0o” respectively, then Theorem m remains valid with T *(p q)(f) and
;p q)(f) replaced by & *(p q)(f) and aép q)(f) respectively.



JFCA-2023/14(1) RELATIVE (p, ¢)-ORDER AND RELATIVE (p, q)-TYPE 145

Theorem 31. Let f, g and h be any three entire functions of two variables such
that 0 < pgm’q) (f) (= )\ELm’q)(f)) < o0 and 0 < )\Elm’p) (9) < oo. Then

=(m,q) 1
(Bam) T <o)
7 (g)
< min { (Tgqu)(f)> NG (T}(Lmﬂ)(f)) N }
7" (9) ™) (g)
Fm (m.
< max { (Té q)(f)> AT (o) (Th q)(f)> NG p)<g>}
- ) ™) (g)
(m,q) 1
< aép,q)(f) < (i}zm p)((f;) N
Th (g

Remark 6. In Theorem if we will replace the conditions ‘0 < pﬁlm’q)(f) (=
A;Lm’q)(f)) < oo and 0 < )\hm’p) (g) < 0” by 0 < /\gm’q)(f) < oo and0 < pﬁlm’p) (9)
(= )\gm’p)(g)) < 00” respectively, then Theoremﬂ remains valid with ?(gp’q)(f) and
Tép’q)(f) replaced by E_E,”"”(f) and Uép’q)(f) respectively.

4. CONCLUSION

Throughout this article, we have generalized some previous results introducing
the concepts of (p, q)-th order and (p,q)-th type of entire functions of two complex
variables. Further it is interesting to extend the results of this paper for more than
two complex variables which can easily be carried out by any interested reader or
the involved author.
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