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EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL

DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY

CONDITION

TAWANDA GALLAN CHAKUVINGA AND FATMA SERAP TOPAL

Abstract. In this paper, we investigate the existence of positive solutions for

a class of nonlinear boundary value problem of fractional differential equations
with integral boundary conditions. The procedure is based on the fixed point

theorems due to the Avery-Peterson and the Guo-Krasnoselskii theorem for
obtaining the main results to the fractional order integral boundary value

problem.

1. Introduction

In this study, we consider the following fractional order integral boundary value
problem (FIBVP)

Dβ(ϕp(
cDαy(t))) + r(t)f(t, y(t), y′(t)) = 0, t ∈ [0, 1],

y(0) = y′′(0) = 0, y(1) = k
∫ 1

0
y(s)ds,

ϕp(
cDαy(0)) = [ϕp(

cDαy(0))]′ = 0,

(1)

where 2 < α ≤ 3, 1 < β ≤ 2, 0 < k < 2, cDα and Dβ are the Caputo and
Riemann-Liouville derivatives respectively and ϕp(y) = |y|p−2y such that p > 1,
ϕ−1
p = ϕq with 1/p+ 1/q = 1.
Several studies have been aligned to fractional calculus and these aimed at a wide

area of applications which include biological science, feedback amplifiers, electrical
circuits and physics related areas, see [3],[5],[7],[8]. Numerous work on fractional
calculus initially focused on solvability of linear initial value fractional differential
equations with unique functions [12]. Recently, advances in the theory of fractional
calculus has led to the inception and a notable appreciation of fractional differen-
tial equations with its widespread application in physics, chemistry, engineering,
mechanics and so forth, see [9]-[11]. With time, much more work was reoriented to
existence and multiplicity of positive solutions of nonlinear initial value fractional
differential equations by means of fixed point theorems such as the Krasnosel’skii
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fixed point theorem among others [26]-[28]. Moreover, existence of positive solu-
tions of boundary value problems with integer order differential equation extended
to p-Laplacian boundary value problems were investigated by [12]-[16], of which
many authors have concentrated on, in recent years. Some work incorporating
boundary value problems with integral boundary conditions have been studied on
the existence and nonexistence of positive solutions on such nonlinear fractional
differential equations, see [12],[17]-[20].
A small number of papers have covered nonlinear fractional differential equations
with a p-Laplacian operator some of which include [21],[22]. Furthermore, different
types of fractional-order derivatives have been widely investigated exclusively from
each other in various fractional differential equations. A mouthful of fractional
differential equations with mixed fractional -order derivatives have not been suffi-
ciently studied, some of the few include [23]-[25].
Despite the existence of the afore-mentioned literature and other prior work, to
the best of the authors’ knowledge, hardly any work involves the existence of mul-
tiple positive solutions of nonlinear fractional differential equations with integral
boundary value conditions and mixed Caputo-Riemann Liouville fractional-order
derivatives. In this study we address this lag, one aspect to note is that the non-
linear fractional differential equation we consider herein consists of two nonlinear
terms, which are p-Laplacian operator and the f term dependent on the first order
derivative y′.

This paper is organized in such a manner, Section 2 presents some necessary
background material, lemmas, definitions and Green’s function with its properties.
In Section 3, the main results are derived. This section deals with the existence of
the single and the multiple positive solutions for the FIBVP (1) based on the fixed
point theorems.

In the entire paper, we assume the following conditions hold:

(H1) f : [0, 1]× [0,+∞)× (−∞,+∞)→ [0,∞) is continuous;
(H2) r ∈ C([0, 1], [0,+∞)) and there exists 0 < ω < 1 such that∫ 1

ω
G(1, s)ϕq(I

βr(s))ds > 0.

2. Basic Definitions and Preliminaries

In this section, we introduce some necessary definitions and lemmas.

Definition 2.1. [6] The integral

Iβg(t) =

∫ t

a

(t− s)β−1

Γ(β)
g(s)ds, (2)

where β > 0, is the fractional integral of order β for a function g(t).

Definition 2.2. [6] For a function g(t) the expression

Dβ
0+g(t) =

1

Γ(n− β)

(
d

dt

)n ∫ t

0

(t− s)n−β−1g(s)ds, (3)

is called the Riemann-Liouville fractional derivative of order β, where n = [β] + 1,
and [β] denotes the integer part of number β.
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Definition 2.3. [6] The α order Caputo fractional derivatives for a function f(t)
is defined as follows:

cDαf(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds, n− 1 < α < n. (4)

Definition 2.4. [2] Let P ⊆ K be a nonempty, convex closed set and K a real
Banach space. Then P is called a cone in K provided that

(1) λy ∈ P , for all y ∈ P and λ ≥ 0;
(2) y,−y ∈ P implies that y = 0.

Definition 2.5. [2] Let P be a cone in real Banach space K. If the map Υ : P →
[0,∞) is continuous and satisfies

Υ(tx+ (1− t)y) ≥ tΥ(x) + (1− t)Υ(y), x, y ∈ P, t ∈ [0, 1],

then Υ is called a nonnegative continuous concave functional on P .
In a similar way, the map ω is a nonnegative continuous convex function on a cone
P of a real Banach space K provided that ω → [0,∞) is continuous and

ω(tx+ (1− t)y) ≤ tω(x) + (1− t)ω(y),

for all x, y ∈ P and t ∈ [0, 1].

Lemma 2.1. [1] Assume that g ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of
order β > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

IβDβg(t) = g(t) + c1t
β−1 + c2t

β−2 + · · ·+ cN t
β−N , (5)

for some ci ∈ R, i = 1, 2, · · · , N , where N is the smallest integer greater than or
equal to β.

Lemma 2.2. [2] Assume that α > 0 and n = [α] + 1. If the function y ∈ L[0, 1] ∩
C[0, 1], then there exists ci ∈ R, i = 1, 2, . . . , n, such that

Iα(cDαf(t)) = f(t)− c1 − c2t · · · − cntn−1. (6)

Lemma 2.3. The FIBVP (1) has a unique solution as follows:

y(t) =

∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds, t ∈ [0, 1] (7)

where

G(t, s) =

{
2t(1−s)α−1(α−k(1−s))−α(2−k)(t−s)α−1

(2−k)Γ(α+1) , 0 ≤ s ≤ t ≤ 1,
2t(1−s)α−1(α−k(1−s))

(2−k)Γ(α+1) , 0 ≤ t ≤ s ≤ 1.
(8)

Proof. Let u(t) = ϕp(
cDαy(t)), we now show that the problem (1) can be expressed

as the following IBVPs:{
Dβu(t) + r(t)f(t, y(t), y′(t)) = 0,

u(0) = u′(0) = 0
(9)

and {
cDαy(t) = ϕq(u(t)),

y(0) = y′′(0) = 0, y(1) = k
∫ 1

0
y(s)ds.

(10)
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Using Lemma 2.1 and (9), we get

u(t) = −Iβ(r(t)f(t, y(t), y′(t))) + c1t
β−1 + c2t

β−2,

since u(0) = u′(0) = 0, then c1 = c2 = 0 and we have

u(t) =− Iβ(r(t)f(t, y(t), y′(t)))

=
−1

Γ(β)

∫ t

0

(t− s)β−1r(s)f(s, y(s), y′(s))ds. (11)

Also, from (10) and Lemma 2.2

y(t) = −Iαϕq(Iβ(r(t)f(t, y(t), y′(t)))) + c0 + c1t+ c2t
2,

since y(0) = y′′(0) = 0, then c0 = c2 = 0,

y(t) = −Iαϕq(Iβ(r(t)f(t, y(t), y′(t)))) + c1t. (12)

From condition y(1) = k
∫ 1

0
y(s)ds of (10), we get

y(1) = k

∫ 1

0

y(s)ds = −
∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds+ c1,

then

c1 = k

∫ 1

0

y(s)ds+

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

substituting for c1 into (12) implies that

y(t) = −Iαϕq(Iβ(r(t)f(t, y(t), y′(t)))) + kt

∫ 1

0

y(s)ds

+ t

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds. (13)

Let H =
∫ 1

0
y(t)dt, then from (13), we have

H = −
∫ 1

0

∫ t

0

(t− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))dsdt+

∫ 1

0

ktHdt

+

∫ 1

0

t

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))dsdt

= −
∫ 1

0

(1− s)α

Γ(α+ 1)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds+
k

2
H

+
1

2

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

and so

(2− k)

2
H = −

∫ 1

0

(1− s)α

Γ(α+ 1)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

+
1

2

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds
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thus

H = − 2

2− k

∫ 1

0

(1− s)α

Γ(α+ 1)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

+
1

2− k

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds. (14)

Substituting (14) into (13), we get

y(t) =−
∫ t

0

(t− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

− 2kt

2− k

∫ 1

0

(1− s)α

Γ(α+ 1)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

+
kt

2− k

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

+ t

∫ 1

0

(1− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

=

∫ 1

0

2t(1− s)α−1(α− k(1− s))
(2− k)Γ(α+ 1)

ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

−
∫ t

0

(t− s)α−1

Γ(α)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

=

∫ t

0

2t(1− s)α−1(α− k(1− s))− α(t− s)α−1(2− k)

(2− k)Γ(α+ 1)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

+

∫ 1

t

2t(1− s)α−1(α− k(1− s))
(2− k)Γ(α+ 1)

ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

=

∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds.

This completes the proof. �

Now, we will give some inequalities satisfied by the Green’s function of the
problem.

Lemma 2.4. [6] The function G(t, s) defined in (8) satisfies the following proper-
ties:

(1) 0 < G(t, s) ≤ 2
(2−k)Γ(α) , for t, s ∈ (0, 1) if and only if 0 < k < 2.

(2) tG(1, s) ≤ G(t, s) ≤ 2α
k(α−2)G(1, s), for all t, s ∈ (0, 1), 2 < α < 3 and

0 < k < 2.

The following fixed point theorems and the definition are fundamental and im-
portant to the proof of our main results.

Theorem 2.5. [31] Let K be a Banach space, P ⊂ K a cone, and Ω1,Ω2 two
bounded open subsets of K centered at the origin with Ω1 ⊂ Ω2. Assume that
A : P ∩ (Ω2 \ Ω1) → P is completely continuous operator such that either of the
following holds:

(1) ‖Ty‖ ≤ ‖y‖, y ∈ P ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω2,
(2) ‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖, y ∈ P ∩ ∂Ω2.
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Then T has at least one fixed point in P ∩ (Ω2 \ Ω1).

Definition 2.6. [30] A completely continuous operator is continuous and maps
bounded sets into pre-compact sets. If ω1 and ω2 be nonnegative continuous convex
functionals on P , Υ be a nonnegative continuous concave functional on P and ϑ
be a nonnegative continuous functional on P . Therefore, for positive real numbers
a, b, c and d, we denote the following convex sets

P (ω1, d) = {x ∈ P |ω1(x) < d},
P (ω1,Υ, b, d) = {x ∈ P |b ≤ Υ(x), ω1(x) ≤ d},
P (ω1, ω2,Υ, b, c, d) = {x ∈ P |b ≤ Υ(x), ω2(x) ≤ c, ω1(x) ≤ d}

and a closed set

R(ω1, ϑ, a, d) = {x ∈ P |a ≤ ϑ(x), ω1(x) ≤ d}.

Theorem 2.6. [30] Let P be a cone in a real Banach space K. Let ω1 and ω2 be
nonnegative continuous convex functionals on P , Υ be a nonnegative continuous
concave functional on P and ϑ be a nonnegative continuous functional on P sat-
isfying ϑ(λx) ≤ λϑ(x) for 0 ≤ λ ≤ 1, such that for some positive numbers X and
d,

Υ(x) ≤ ϑ(x) and ‖x‖ ≤ Xω1(x) (15)

for all x ∈ P (ω1, d). Suppose T : P (ω1, d)→ P (ω1, d) is completely continuous and
there exist positive numbers a, b and c with a < b such that

(C1) {x ∈ P (ω1, ω2,Υ, b, c, d)|Υ(x) > b} 6= Φ and Υ(Tx) > b for x ∈ P (ω1, ω2,Υ, b, c, d);
(C2) Υ(Tx) > b for x ∈ P (ω1,Υ, b, d) with ω2(Tx) > c;
(C3) 0 /∈ R(ω1, ϑ, a, d) and ϑ(Tx) < a for x ∈ R(ω1, ϑ, a, d) with ϑ(x) = a.

Then, T has at least three fixed points x1, x2, x3 ∈ P (ω1, d) such that

ω1(xi) ≤ d for i = 1, 2, 3,

b < Υ(x1),

a < ϑ(x2) with Υ(x2) < b,

ϑ(x3) < a.

3. Main results

We consider the Banach space K = (C1[0, 1], ‖·‖) endowed with maximum norm

‖y‖ = max

{
max

0≤t≤1
|y(t)|, max

0≤t≤1
|y′(t)|

}
.

We denote C1+[0, 1] = {η ∈ C1[0, 1]|η(t) ≥ 0, t ∈ [0, 1]}. Let the cone P ⊂ K be
defined by

P = {y ∈ K|y(t) ≥ 0, y(0) = y′′(0) = ϕp(
cDαy(0)) = [ϕp(

cDαy(0))]′ = 0,

y(1) = k

∫ 1

0

y(s)ds, y is a concave on [0, 1]}.

We define an operator T : P → P as

Ty(t) :=

∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds, (16)



94 T. G. CHAKUVINGA AND F. S. TOPAL JFCA-2023/14(1)

where G is defined in (8).
Nonnegative continuous concave functional Υ, nonnegative continuous convex

functionals ω2, ω1 and the nonnegative continuous functional ϑ according to [29]
are defined on the cone P by

ω1(y) = max
0≤t≤1

|y′(t)|, ϑ(y) = ω2(y) = max
0≤t≤1

|y(t)|,Υ(y) = min
1
4≤t≤

3
4

|y(t)|.

Lemma 3.1. [30] If y ∈ P , then

max
0≤t≤1

|y(t)| ≤ max
0≤t≤1

|y′(t)|.

Lemma 3.2. T : P → P is completely continuous.

Proof. By the continuity and the non-negativeness of G and f on their domains of
definition, we see that if y ∈ P , then Ty ∈ K and Ty(t) ≥ 0 for all t ∈ [0, 1].
We proceed to show that T (P ) ⊂ P , we take y ∈ P , then

Ty(0) =

∫ 1

0

G(0, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds = 0

and

Ty(1) =

∫ 1

0

G(1, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

=

∫ 1

0

(1− s)α−1

(2− k)Γ(α+ 1)
[2(α− k + ks)− (2− k)α]ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

=k

∫ 1

0

(1− s)α−1

(2− k)Γ(α+ 1)
[2s− 2 + α]ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

=k

∫ 1

0

Ty(s)ds,

also

(Ty)′′(t) =

∫ 1

0

∂2G(t, s)

∂t2
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

=
α(α− 1)(α− 2)

Γ(α+ 1)

∫ t

0

(t− s)α−3ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

≤0.

We notice that Ty(t) is concave and (Ty)′′(0) = 0. By the continuity of G and f , the
operator T : P → P is continuous. Let Ω ⊂ P be bounded. Then, for all t ∈ [0, 1]
and y ∈ Ω, there exists a positive constant M such that |f(t, y(t), y′(t))| ≤ M .
Thus,

|(Ty)(t)| =
∣∣∣∣∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≤
∫ 1

0

|G(t, s)|
(∫ s

0

(s− τ)β−1dτ

)q−1

ds

(
‖r‖M
Γ(β)

)q−1

≤ (‖r‖M)q−1

(Γ(β + 1))q−1

∫ 1

0

s(q−1)β |G(t, s)|ds

≤ 2(‖r‖M)q−1

(2− k)Γ(α)(Γ(β + 1))q−1
.
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This implies that T (Ω) is uniformly bounded. On the other hand, for any ε > 0,
there exists a constant δ > 0 such that t1, t2 ∈ [0, 1] and |t1 − t2| < δ,

|G(t1, s)−G(t2, s)| <
(‖r‖M)q−1

(Γ(β + 1))q−1
ε.

Hence, for all y ∈ Ω,

|(Ty)(t2)− (Ty)(t1)| =
∫ 1

0

|G(t2, s)−G(t1, s)|ϕq(Iβ(r(s)f(s, y(s), y′(s))))ds

≤
∫ 1

0

|G(t2, s)−G(t1, s)|
(∫ s

0

(s− τ)β−1dτ

)q−1

ds

(
‖r‖M
Γ(β)

)q−1

≤ (‖r‖M)q−1

(Γ(β + 1))q−1

∫ 1

0

s(q−1)β |G(t2, s)−G(t1, s)|ds

≤ (‖r‖M)q−1

(Γ(β + 1))q−1

∫ 1

0

|G(t2, s)−G(t1, s)|ds

=ε,

which means that T (Ω) is equicontinuous. By the Arzela-Ascoli theorem, we see
that T : P → P is completely continuous. The proof is complete. �

We now present the sufficient conditions of the operator T applying the Avery-
Peterson fixed theorem for the existence of at least three positive solutions to the
FIBVP (1).
Let

E =
‖r‖q−1

(Γ(β + 1))q−1
max

{∣∣∣∣∫ 1

0

2sβ(q−1)(1− s)α−1(α− k + ks)

(2− k)Γ(α+ 1)
ds

∣∣∣∣ ,∣∣∣∣∫ 1

0

sβ(q−1)

(
2(1− s)α−1(α− k + ks)

(2− k)Γ(α+ 1)
− (1− s)α−2

Γ(α− 1)

)
ds

∣∣∣∣} ,
N =

[
1

4

∫ 3
4

1
4

G(1, s)ϕq(I
βr(s))ds

]−1

,

Z =

[
2α

k(α− 2)

∫ 1

0

G(1, s)ϕq(I
βr(s))ds

]−1

,

where ‖r‖ = max0≤t≤1 |r|.

Theorem 3.3. Suppose there exist constants 0 < a < b < c < d where c = 8α
k(α−2)b,

and assume that f satisfies the following conditions:

(N1) f(t, u, v) ≤ ϕp
(
d
E

)
for (t, u, v) ∈ [0, 1]× [0, d]× [−d, d];

(N2) f(t, u, v) > ϕp (Nb) for (t, u, v) ∈ [ 1
4 ,

3
4 ]× [b, c]× [−d, d];

(N3) f(t, u, v) < ϕp (Za) for (t, u, v) ∈ [0, 1]× [0, a]× [−d, d].
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Then, the FIBVP (1) has at least three positive solutions y1, y2 and y3 satisfying

max
0≤t≤1

|y′i(t)| ≤ d, for i = 1, 2, 3;

b < min
1
4≤t≤

3
4

|y1(t)|;

a < max
0≤t≤1

|y2(t)|, with min
1
4≤t≤

3
4

|y2(t)| < b;

max
0≤t≤1

|y3(t)| < a.

Proof. Problem (1) has a solution y = y(t) if and only if y is a solution to the opera-

tor equation y = Ty =
∫ 1

0
G(t, s)ϕq(I

β(r(s)f(s, y(s), y′(s))))ds. We now show that
the operator T satisfies the Avery-Peterson fixed point theorem which proves the ex-
istence of three fixed points of T . If y ∈ P (ω1, d), then ω1(y) = max0≤t≤1 |y′(t)| ≤ d.
From Lemma 3.1 we get

max
0≤t≤1

|y(t)| ≤ max
0≤t≤1

|y′(t)| ≤ d,

then, assumption (N1) implies that f(t, y(t)) ≤ ϕq(
d
E ), for y nonnegative on J .

Adversely, for y ∈ P , there exists Ty ∈ P , then Ty is concave on [0, 1] and
maxt∈[0,1] |(Ty)′(t)| = max{|(Ty)′(0)|, |(Ty)′(1)|}, thus

ω1(Ty(t)) = max
0≤t≤1

|(Ty)′(t)|

= max{|(Ty)′(0)|, |(Ty)′(1)|}

= max

{∣∣∣∣∫ 1

0

2(1− s)α−1(α− k + ks)

(2− k)Γ(α+ 1)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣ ,∣∣∣∣∫ 1

0

(
2(1− s)α−1(α− k + ks)

(2− k)Γ(α+ 1)
− (1− s)α−2

Γ(α− 1)

)
ϕq(I

β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣}
≤ d‖r‖q−1

E(Γ(β + 1))q−1
max

{∣∣∣∣∫ 1

0

2sβ(q−1)(1− s)α−1(α− k + ks)

(2− k)Γ(α+ 1)
ds

∣∣∣∣ ,∣∣∣∣∫ 1

0

sβ(q−1)

(
2(1− s)α−1(α− k + ks)

(2− k)Γ(α+ 1)
− (1− s)α−2

Γ(α− 1)

)
ds

∣∣∣∣}
=d.

Therefore, T : P (ω1, d)→ P (ω1, d).
To verify condition (C1) of Theorem 2.6, we assign y(t) = 1

2 (b + c), for 0 < t < 1.

We can easily see that y(t) = 1
2 (b+ c) ∈ P (ω1, ω2,Υ, b, c, d) and Υ(y) = Υ( b+c2 ) =

1
2

(
8α

k(α−2)b+ b
)

= 8α+k(α−2)
2k(α−2) b > b, thus {y ∈ P (ω1, ω2,Υ, b, c, d)|Υ(y) > b} 6= Φ. If

y ∈ P (ω1, ω2,Υ, b, c, d),
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then b < y(t) ≤ c, |y′(t)| ≤ d for 1
4 ≤ t ≤

3
4 . From assumption (N2), we get

Υ(Ty(t)) = min
1
4≤t≤

3
4

|Ty(t)|

= min
1
4≤t≤

3
4

∣∣∣∣∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≥ min

1
4≤t≤

3
4

t

∣∣∣∣∫ 1

0

G(1, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≥1

4

∣∣∣∣∣
∫ 3

4

1
4

G(1, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣∣
≥1

4
Nb

∣∣∣∣∣
∫ 3

4

1
4

G(1, s)ϕq(I
βr(s))ds

∣∣∣∣∣
=b.

This shows that condition (C1) of Theorem 2.6 is satisfied. We proceed by verifying
condition (C2) of Theorem 2.6. For all y ∈ P (ω1,Υ, b, d) and ω2(Ty) > c, we have

Υ(Ty(t)) = min
1
4≤t≤

3
4

|Ty(t)|

≥1

4

∣∣∣∣∫ 1

0

G(1, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≥1

4

k(α− 2)

2α

∣∣∣∣∫ 1

0

max
0≤t≤1

{G(t, s)}ϕq(Iβ(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≥k(α− 2)

8α
max

0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≥k(α− 2)

8α
ω2(Ty(t))

>
k(α− 2)

8α
c = b.

Therefore, condition (C2) of Theorem 2.6 is satisfied. We then show that (C3) of
Theorem 2.6 also holds. Evidently, when ϑ(0) = 0 < a, 0 /∈ R(ω1, ϑ, a, d) holds. If
y ∈ R(ω1, ϑ, a, d) with ϑ(y) = a. Then, by assumption (N3), we have

ϑ(Ty(t)) = max
0≤t≤1

|Ty(t)|

≤ max
0≤t≤1

∣∣∣∣∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≤
∣∣∣∣∫ 1

0

max
0≤t≤1

{G(t, s)}ϕq(Iβ(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
≤ 2α

k(α− 2)

∣∣∣∣∫ 1

0

G(t, s)ϕq(I
β(r(s)f(s, y(s), y′(s))))ds

∣∣∣∣
<

2α

k(α− 2)
Za

∣∣∣∣∫ 1

0

G(1, s)ϕq(I
βr(s))ds

∣∣∣∣ = a.
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Therefore, condition (C3) of Theorem 2.6 is satisfied. Thus, applying Theorem
2.6 implies that the integral boundary value problem (1) has at least three positive
solutions y1, y2 and y3. �

Example 3.1. Consider the fractional differential equation:
D

3
2 (ϕ2(cD

5
2 y(t))) + r(t)f(t, y(t), y′(t)) = 0, t ∈ [0, 1],

y(0) = y′′(0) = 0, y(1) = 1
2

∫ 1

0
y(s)ds,

ϕ2(cD
5
2 y(0)) = [ϕ2(cD

5
2 y(0))]′ = 0.

(17)

where r(t) = 7(1− t) and

f(t, y, y′) =


t

100 + 20y3 +
(
|y′|
1000

)3

, y ≤ 1,

t
100 + 19 + y +

(
|y′|
1000

)3

, y ≥ 1.

We set a = 0.1, b = 1 and d = 100. By computations, c = 80, E = 0.81667, N =
19.169 and Z = 0.35880. As a result, f(t, y, v) satisfies

f(t, y, y′) <ϕ2

(
d

E

)
≈ 122.4485, for (t, y, y′) ∈ [0, 1]× [0, 100]× [−102, 102],

f(t, y, y′) >ϕ2 (Nb) ≈ 19.169, for (t, y, y′) ∈
[

1

4
,

3

4

]
× [1, 80]× [−102, 102],

f(t, y, y′) <ϕ2 (Za) ≈ 0.035880, for (t, y, y′) ∈ [0, 1]× [0, 0.1]× [−102, 102].

Since all conditions of Theorem 3.3 hold. Therefore, the problem (17) has at
least three positive solutions.

In this part, we impose some conditions on f which allow us to apply Theorem
2.5 to establish the existence of at least a single positive solution for the FIBVP
(1).

Theorem 3.4. Assume f : [0, 1]× [0,+∞)× (−∞,+∞)→ [0,+∞) is continuous
and there exist positive constants C, ki and σi ∈ (0, 1) where i = 1, 2 such that

(A1) f(t, u, v) ≤ ϕp(C + k1|u|σ1 + k2|v|σ2) and f(t, u, v) 6= 0, (t, u, v) ∈ [0, 1] ×
[0,+∞)× (−∞,+∞).

Then the FIBVP (1) has at least one positive solution.

Proof. Let Ω ⊂ P be bounded, that is, there exists a constant M > 0 such
that ‖y‖ ≤ M for y ∈ Ω. By definition of ‖y‖, 0 ≤ y(t), |y′(t)| ≤ M, y ∈ Ω,
we let C = max0≤y,|y′|≤M f(t, y, y′). Let P l = {y ∈ P, ‖y‖ ≤ l}, where l ≥
max{(3k1L)

1
1−σ1 , (3k2L)

1
1−σ2 , 3LC} and

L =
‖r‖q−1

(Γ(β + 1))q−1

[
1

Γ(α)
+

2

Γ(α+ 1)

]
.

We now show that T : P l → P l. Actually, if y ∈ P l, then 0 ≤ y(t), |y′(t)| ≤ l, t ∈
[0, 1]. By condition (A1)

f(y, v) ≤ ϕp(C + k1l
σ1 + k2l

σ2) (18)
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By (18) and from Section 3, we can ascertain that

|(Ty)′(t)| =
∣∣∣∣−∫ t

0

(t− s)α−2

Γ(α− 1)
ϕq(I

βr(s)f(s, y, y′))ds+

∫ 1

0

2(1− s)α−1(α− k + ks)

(2− k)αΓ(α)
ϕq(I

βr(s)f(s, y, y′))ds

∣∣∣∣
≤ ‖r‖

q−1

Γ(α− 1)

∫ t

0

(t− s)α−2ϕq

(∫ s

0

(s− τ)β−1

Γ(β)
|f(τ, y(τ), y′(τ))|dτ

)
ds

+
2‖r‖q−1

(2− k)Γ(α+ 1)

∫ 1

0

(1− s)α−1(α− k + ks)ϕq

(∫ s

0

(s− τ)β−1

Γ(β)
|f(τ, y(τ), y′(τ))|dτ

)
ds

≤‖r‖
q−1(C + k1l

σ1 + k2l
σ2)

Γ(α− 1)(Γ(β + 1))q−1

∫ t

0

sβ(q−1)(t− s)α−2ds

+
2α‖r‖q−1(C + k1l

σ1 + k2l
σ2)

(2− k)Γ(α+ 1)(Γ(β + 1))q−1

∫ 1

0

sβ(q−1)(1− s)α−1ds

≤‖r‖
q−1(C + k1l

σ1 + k2l
σ2)

Γ(α− 1)(Γ(β + 1))q−1

∫ t

0

(t− s)α−2ds

+
2α‖r‖q−1(C + k1l

σ1 + k2l
σ2)

(2− k)Γ(α+ 1)(Γ(β + 1))q−1

∫ 1

0

(1− s)α−1ds

≤‖r‖
q−1(C + k1l

σ1 + k2l
σ2)

(Γ(β + 1))q−1

[
1

Γ(α)
+

2

Γ(α+ 1)

]
(19)

=L(C + k1l
σ1 + k2l

σ2), t ∈ [0, 1];

this means ‖Ty‖ ≤ L(C + k1l
σ1 + k2l

σ2) ≤ l. By applying Schauder’s fixed point
theorem, condition f(t, y, y′) 6= 0 implies that T has at least one nontrivial fixed
point in P l, which is a positive solution of the FIBVP (1). This completes the
proof. �

Example 3.2. Consider the FIBVP:
D

3
2 (ϕ2(cD

5
2 y(t))) + r(t)f(t, y(t), y′(t)) = 0, t ∈ [0, 1],

y(0) = y′′(0) = 0, y(1) = 1
2

∫ 1

0
y(s)ds,

ϕ2(cD
5
2 y(0)) = [ϕ2(cD

5
2 y(0))]′ = 0.

(20)

where r(t) = 1− t and

f(t, y, y′) = 5 +
|y| 23

3
+
|y′| 23

4
, (t, y, y′) ∈ [0, 1]× [0,+∞)× R.

It is evident that f satisfies all the conditions of Theorem 3.4. Therefore, the
FIBVP (20) has at least one positive solution.

Theorem 3.5. Assume f : [0, 1]× [0,+∞)× (−∞,+∞)→ [0,+∞) is continuous
and there exist two constants R > l > 0 such that

(A2) f(t, u, v) ≥ ϕp(L1l), (t, u, v) ∈ [0, 1]× [0, l]× [−l, l];
(A3) f(t, u, v) ≤ ϕp(LR), (t, u, v) ∈ [0, 1]× [0,R]× [−R,R].

Then the FIBVP (1) has at least one positive solution where

L =

[
‖r‖q−1

(Γ(β + 1))q−1

[
1

Γ(α)
+

2

Γ(α+ 1)

]]−1

and L1 =

[
2‖r‖q−1

αΓ(α+ 1)(Γ(β + 1))q−1

]−1

.

Proof. Take Ω1 = {y ∈ P : ‖y‖ < l}, then, for y ∈ ∂Ω1 we get 0 ≤ y(t), |y′(t)| ≤
l, t ∈ [0, 1]. By condition (A2), f(t, y, y′) ≥ ϕp(L1l), t ∈ [0, 1]. By (19), we have
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‖Ty‖ ≥|(Ty)′(0)|

=

∣∣∣∣∫ 1

0

2(1− s)α−1(α− k + ks)

(2− k)αΓ(α)
ϕq(I

βr(s)f(s, y, y′))ds

∣∣∣∣
=

2‖r‖q−1

(2− k)Γ(α+ 1)

∫ 1

0

(1− s)α−1(α− k + ks)ϕq

(∫ s

0

(s− τ)β−1

Γ(β)
|f(τ, y(τ), y′(τ))|dτ

)
ds

≥ 2(α− k)‖r‖q−1L1l

(2− k)Γ(α+ 1)(Γ(β + 1))q−1

∫ 1

0

(1− s)α−1ds

≥ 2‖r‖q−1L1l

Γ(α+ 1)(Γ(β + 1))q−1

∫ 1

0

(1− s)α−1ds

=
2‖r‖q−1L1l

αΓ(α+ 1)(Γ(β + 1))q−1

=l. (21)

Take Ω2 = {y ∈ P : ‖y‖ < R}, then, for y ∈ ∂Ω2 we get 0 ≤ y(t), |y′(t)| ≤
R, t ∈ [0, 1]. By condition (A3),

|(Ty)′(t)| =
∣∣∣∣− ∫ t

0

(t− s)α−2

Γ(α− 1)
ϕq(I

βr(s)f(y, v))ds+

∫ 1

0

2(1− s)α−1(α− k + ks)

(2− k)αΓ(α)
ϕq(I

βr(s)f(y, v))ds

∣∣∣∣
≤ ‖r‖

q−1

Γ(α− 1)

∫ t

0

(t− s)α−2ϕq

(∫ s

0

(s− τ)β−1

Γ(β)
|f(y(τ), v(τ))|dτ

)
ds

+
2‖r‖q−1

(2− k)Γ(α+ 1)

∫ 1

0

(1− s)α−1(α− k + ks)ϕq

(∫ s

0

(s− τ)β−1

Γ(β)
|f(y(τ), v(τ))|dτ

)
ds

≤ ‖r‖q−1LR
Γ(α− 1)(Γ(β + 1))q−1

∫ t

0

sβ(q−1)(t− s)α−2ds

+
2α‖r‖q−1LR

(2− k)Γ(α+ 1)(Γ(β + 1))q−1

∫ 1

0

sβ(q−1)(1− s)α−1ds

≤ ‖r‖q−1LR
Γ(α− 1)(Γ(β + 1))q−1

∫ t

0

(t− s)α−2ds

+
2α‖r‖q−1LR

(2− k)Γ(α+ 1)(Γ(β + 1))q−1

∫ 1

0

(1− s)α−1ds

≤ ‖r‖q−1LR
(Γ(β + 1))q−1

[
1

Γ(α)
+

2

Γ(α+ 1)

]
=R, t ∈ [0, 1].

As a result,

max
t∈[0,1]

|(Ty)′(t)| ≤ R. (22)

It follows from (22) that ‖Ty‖ ≤ R for y ∈ ∂Ω2. Thus, by Theorem 2.5, T has at
least one fixed point in P ∩ (Ω2 \ Ω1), which is the positive solution of the FIBVP
(1). This completes the proof. �
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Example 3.3. Consider the fractional differential equation:
D

3
2 (ϕ2(cD

5
2 y(t))) + r(t)f(t, y(t), y′(t)) = 0, t ∈ [0, 1],

y(0) = y′′(0) = 0, y(1) = 1
2

∫ 1

0
y(s)ds,

ϕ2(cD
5
2 y(0)) = [ϕ2(cD

5
2 y(0))]′ = 0.

(23)

where r(t) = 7(1− t) and

f(t, y, y′) = 2 +
y

45
+
|y′| 32
100

.

We set R = 35 and l = 2. By computations, L = 0.78892 and L1 = 0.14025. Thus,
f(t, y, y′) satisfies

f(t, y, y′) ≈2 ≥ ϕ2 (L1l) ≈ 1.5778, for (t, y, y′) ∈ [0, 1]× [0, 2]× [−2, 2],

f(t, y, y′) ≈4.8484 ≤ ϕ2 (LR) ≈ 4.9088, for (t, y, y′) ∈ [0, 1]× [0, 35]× [−35, 35].

Since all conditions of Theorem 3.5 hold, the FIBVP (23) has at least one positive
solution.
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