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A WAVELET-BASED COLLOCATION METHOD FOR

FRACTIONAL CAHN-ALLEN EQUATIONS

R. ARULDOSS, K. BALAJI

Abstract. In the numerical analysis, wavelets play an important role in deal-

ing with approximate solutions of differential equations. Haar wavelet basis
permits to enlarge a class of functions in the collocation frame work. In this

article, we propose the Haar wavelet-based numerical technique for solving

non-linear fractional Cahn-Allen equations. Through the proposed technique,
the solution is obtained on the coarse grid points and then refined towards

higher accuracy by increasing the level of the Haar wavelets. The advantages

of the proposed technique are the sparse structure of the Haar wavelets ma-
trices, the small computation costs, the small number of significant wavelets

coefficients and the simple applicability for a variety of boundary conditions.

The solution process, the efficiency and the applicability of the proposed tech-
nique are demonstrated by an example.

1. Introduction

Fractional calculus is a generalization of ordinary calculus to an arbitrary order.
In recent years, several fractional models have drawn much attention in diverse dis-
ciplines of science and technology, such as viscoelasticity, diffusion, control theory,
electromagnetism, electrochemistry, biosciences, bioengineering, fluid mechanics,
non-linear dynamical systems and so on.

However, analytical solutions do not exist for most of the Fractional Differ-
ential Equations(FDEs). Owing to this fact, many numerical techniques have
been introduced to find approximate solutions of FDEs. These numerical tech-
niques include Adomian decomposition method[14], Laplace Adomian decomposi-
tion method[16], Natural reduced differential transform method[7, 9], General frac-
tional residual power series method[8], Variational iteration transform method[28],
Homotopy perturbation method[24], Homotopy analysis method[4], Homotopy per-
turbation transform method[23] and wavelet based numerical method for inverse
Laplace transform[1].

Wavelets’ bases have received much attention in dealing with approximate solu-
tions of differential equations with integer and non-integer orders. Wavelets permit
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an accurate representation for a variety of functions and so establish a connection
with the fast numerical algorithms. The prominent attributes of wavelets are to
make out singularities, irregular structure and transient phenomena exhibited by
the analyzed equations. The wavelet-based techniques for solving differential equa-
tions usually depend either on the collocation methods or on the Galerkin methods.
Haar wavelets are the simplest orthonormal compact supported piecewise constant
functions. As the derivatives of Haar wavelets do not exist at the breaking points,
it is not possible to solve partial differential equations by Haar wavelets directly.
There are mainly two possibilities to get out of this hurdle. By the first way, Haar
wavelets can be regularized with interpolating splines. This approach was applied
by Cattani[2]. The another way is to make use of the integral method that was
introduced by Chen and Hsiao[3]. Recently, Lepik [10, 11, 12, 13] has setup a tech-
nique based on Haar wavelets for solving differential equations.

The non-linear fractional Cahn-Allen equations arise in many fields of physical
phenomena such as quantum mechanics, plasma physics, gas dynamics and math-
ematical biology. Many authors have investigated the Cahn-Allen equation using
various methodologies in recent years. In[4], A. Esen et al. solved the time fractional
Cahn-Allen equations by Homotopy analysis method. A. Prakash and H. kaur[19]
investigated a numerical approach for time fractional Cahn-Allen equations. In[20],
M. S. Rawashdeh employed the fractional reduced differential transform method to
solve time fractional Cahn-Allen equations. An iterative reproducing kernel method
is introduced for the time-fractional CahnAllen equation by M.G. Sakar et al.[21].

In this article, we demonstrate the Haar wavelet-based numerical technique for
solving fractional Cahn-Allen equations with initial and boundary conditions. This
wavelet based numerical technique is very compatible to solve boundary value prob-
lems.

This article is presented in the following way. Some basic definitions and math-
ematical preliminary facts of fractional calculus are discussed in section 2. Section
3 is devoted to the basic formulation of Haar wavelets, function approximation,
fractional integration of Haar wavelets and fractional integration matrix of Haar
wavelets. In section 4, the proposed wavelet-based numerical technique for solving
fractional Cahn-Allen equation is discussed and we also demonstrate the applica-
bility of the proposed numerical technique by considering a numerical example.
Finally we conclude our work in section 5.

2. Preliminaries

In this section, some necessary definitions and mathematical preliminary facts
of fractional calculus are discussed.
Definition 1 [15, 17, 18, 25] Let θ = (θ1, θ2) ∈ (0,∞) × (0,∞) and h(x, t) ∈
L1 ([0, a]× [0, b]), a, b > 0. The mixed Riemann-liouville fractional integral of order
θ of h(x, t) is defined as

Jθh(x, t) =
1

Γ(θ1)Γ(θ2)

∫ x

0

∫ t

0

(x− υ)θ1−1(t− τ)θ2−1h(υ, τ)dτdυ,

whenever the integral exists.
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The Riemann-liouville fractional integral of order θ1 > 0, along x, keeping t con-
stant, is defined as

Jθ1x h(x, t) =
1

Γ(θ1)

∫ x

0

(x− υ)θ1−1h(υ, t)dυ, whenever the integral exists.

The Riemann-liouville fractional integral of order θ2 > 0, along t, keeping x con-
stant, is defined as

Jθ2t h(x, t) =
1

Γ(θ2)

∫ t

0

(t− τ)θ2−1h(x, τ)dτ, whenever the integral exists.

Let h(x, t), g(x, t) ∈ L1 ([0, a]× [0, b]), a, b > 0, λ, γ ∈ R, ν, µ > −1.
Then the following properties are attained.

(i) Jθ (λh(x, t) + γg(x, t)) = λJθh(x, t) + γJθg(x, t).

(ii) Jθxνtµ =
Γ(ν + 1)Γ(µ+ 1)

Γ(ν + θ1 + 1)Γ(µ+ θ2 + 1)
xθ1+νtθ2+µ.

Definition 2 Let θ = (θ1, θ2) ∈ (0, 1] × (0, 1] and h(x, t) ∈ L1 ([0, a]× [0, b]),
a, b > 0. The Caputo fractional derivative of order θ of h(x, t) is defined as

Dθh(x, t) =
1

Γ(1− θ1)Γ(1− θ2)

∫ x

0

∫ t

0

(x− υ)−θ1(t− τ)−θ2
∂2h(υ, τ)

∂υ∂τ
dτdυ.

The Caputo derivative of order α > 0, along x, keeping t constant, is defined as

Dα
xh(x, t) =

1

Γ(m− α)

∫ x

0

(x− υ)
m−α−1 ∂

mh(υ, t)

∂υm
dυ, m− 1 < α ≤ m, m ∈ N.

The Caputo derivative of order α > 0, along t, keeping x constant, is defined as

Dα
t h(x, t) =

1

Γ(m− α)

∫ t

0

(t− τ)
m−α−1 ∂

mh(x, τ)

∂τm
dτ, m− 1 < α ≤ m, m ∈ N.

Let h(x, t), g(x, t) ∈ L1 ([0, a]× [0, b]) , a, b > 0, θ = (θ1, θ2) ∈ (0, 1] × (0, 1], λ,
γ ∈ R, ν, µ > −1.
Then the following properties are attained.

(i) Dθxνtµ =
Γ(ν + 1)Γ(µ+ 1)

Γ(1 + ν − θ1)Γ(1 + µ− θ2)
xν−θ1tµ−θ2 .

(ii) Dθk = 0, where k is a constant.

(iii) Dθ (λh(x, t) + γg(x, t)) = λ
(
Dθh(x, t)

)
+ γ

(
Dθg(x, t)

)
.

(iv) Dα
t (Jαt h(x, t)) = h(x, t), m− 1 < α ≤ m, m ∈ N.

(v) Jαt (Dα
t h(x, t)) = h(x, t)−

m−1∑
k=0

hk(x, 0+)
tk

k!
, m− 1 < α ≤ m,

where m ∈ N, t > 0 and hk(x, 0+) := limt→0+
∂kh(x,t)
∂tk

, k = 0, 1, 2, . . . ,m− 1.

3. Haar wavelets and function approximation

In this section, Haar wavelets and fractional integration matrix of Haar wavelets
are discussed.
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3.1. Haar wavelets. The family of Haar wavelets for t ∈ [0, 1) is defined as

ψi(t) =
2k/2√
2J+1


1, for t ∈ [m

2k
, m+0.5

2k
)

−1, for t ∈ [m+0.5
2k

, m+1
2k

)

0, otherwise.

(1)

where the integers 2k, k = 0, 1, 2, ..., J , J ∈ N, denote the level of wavelets and the
integers m = 0, 1, 2, . . . , 2k − 1, are the translation parameters. The index ‘i’ in (1)
is evaluated using i = 2k + m + 1. The minimal value of i is 2 and the maximal
value of i is P = 2J+1.
The scaling function ψ1(t) for the family of Haar wavelets is defined as

ψ1(t) =

{
1√
2J+1

, for t ∈ [0, 1)

0, otherwise.

3.2. Approximation of square integrable function. An arbitrary function
f(x, t) ∈ L2 ([0, 1)× [0, 1)) can be written in terms of Haar wavelets as

f(x, t) =

∞∑
i=1

∞∑
j=1

aijψi(x)ψj(t),

where the Haar wavelet coefficients aij ’s are resolved by the inner product 〈ψi(x), 〈f, ψj(t)〉〉.
If f(x, t) is made as piecewise constants approximately on each subinterval, then
the infinite series can be cut off at finite terms, that is,

f(x, t) ≈
P∑
i=1

P∑
j=1

aijψi(x)ψj(t). (2)

To find the numerical approximation of the function f(x, t), we use the collocation
points (xi, tj), where i, j = 1, 2, 3, ..., P. Discretizing (2) at the collocation points,
we obtain

Y = HTCH,

where C = [aij ]P×P , Y = [f(xi, tj)]P×P and H = [ψi(xj)]P×P .
For instance, if J = 2, then we have

H =



0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 0.3536 0.3536 −0.3536 −0.3536 −0.3536 −0.3536
0.5000 0.5000 −0.5000 −0.5000 0 0 0 0

0 0 0 0 0.5000 0.5000 −0.5000 −0.5000
0.7071 −0.7071 0 0 0 0 0 0

0 0 0.7071 −0.7071 0 0 0 0
0 0 0 0 0.7071 −0.7071 0 0
0 0 0 0 0 0 0.7071 −0.7071


3.3. Matrix for fractional integration of Haar wavelets. The fundamental
idea of finding the fractional integration matrix of Haar wavelets[22] is here ex-
plored.
Let Iαi (t) = Jα (ψi(t)) and rαi (t) = Iαi (1). Then the integral Iαi (t) can be evaluated
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using (1) and is given by

Iαi (t) =
2k/2√
2J+1


ϕ1, for t ∈ [m

2k
, m+0.5

2k
)

ϕ2, for t ∈ [m+0.5
2k

, m+1
2k

)

ϕ3, for t ∈ [m+1
2k

, 1)

0, otherwise.

(3)

where ϕ1 =
1

Γ(α+ 1)

(
t− m

2k

)α
,

ϕ2 =
1

Γ(α+ 1)

{(
t− m

2k

)α
− 2

(
t− m+ 0.5

2k

)α}
,

ϕ3 =
1

Γ(α+ 1)

{(
t− m

2k

)α
− 2

(
t− m+ 0.5

2k

)α
+

(
t− m+ 1

2k

)α}
.

If J = 2 and α = 0.5, then the matrix I0.5 of the integration (3) of order 0.5 is
given by,

I0.5 =



0.0997 0.1728 0.2230 0.2639 0.2992 0.3308 0.3596 0.3863
0.0997 0.1728 0.2230 0.2639 0.0997 −0.0147 −0.0864 −0.1415
0.1411 0.2443 0.0333 −0.1154 −0.0666 −0.0343 −0.0223 −0.0162

0 0 0 0 0.1411 0.2443 0.0333 −0.1154
0.1995 −0.0534 −0.0455 −0.0188 −0.0111 −0.0075 −0.0055 −0.0043

0 0 0.1995 −0.0534 −0.0455 −0.0188 −0.0111 −0.0075
0 0 0 0 0.1995 −0.0534 −0.0455 −0.0188
0 0 0 0 0 0 0.1995 −0.0534


4. The proposed numerical technique for fractional Cahn-Allen

equations

In this part, the Haar wavelet-based numerical technique for finding numerical
solutions of fractional Cahn-Allen equations is expounded.
Let us consider the general fractional Cahn-Allen equations

Dα
t h(x, t)− hxx(x, t)− h(x, t) + h3(x, t) = λ(x, t), 0 ≤ x, t ≤ 1, 0 < α ≤ 1, (4)

subject to the initial condition

h(x, 0) = f(x) (5)

and the boundary conditions

h(0, t) = g0(t), h(1, t) = g1(t), (6)

where f(x), g0(t), g1(t), λ(x, t) are known functions, Dα
t is Caputo fractional dif-

ferential operator with respect to ‘t’, hxx = ∂2h
∂x2 , h(x, t) is an unknown function.

Let

Dα
t hxx(x, t) =

P∑
i=1

P∑
j=1

aijψi(x)ψj(t), (7)

where aij ’s are Haar coefficients to be resolved.
Now integrating (7), α times with regard to ‘t’ from 0 to t, we get

hxx(x, t) =

P∑
i=1

P∑
j=1

aijψi(x)Iαj (t) + hxx(x, 0). (8)
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Also integrating (8) twice with regard to x from 0 to x, we attain

h(x, t) =

P∑
i=1

P∑
j=1

aijI
2
i (x)Iαj (t) + h(x, 0) + h(0, t)− h(0, 0) + x (hx(0, t)− hx(0, 0)) .

(9)
Putting x = 1 in (9) and using (6), we attain

g1(t) =

P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t) + g1(0) + g0(t)− g0(0) + hx(0, t)− hx(0, 0),

which implies

hx(0, t)−hx(0, 0) = g1(t)−


P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t) + g1(0) + g0(t)− g0(0)

 . (10)

Using (10) in (9), we attain

h(x, t) =

P∑
i=1

P∑
j=1

aijI
2
i (x)Iαj (t) + f(x) + g0(t)− g0(0)

+ x

g1(t)−

 P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t) + g1(0) + g0(t)− g0(0)

 . (11)

Differentiating (11), α times with regard to ‘t’, we get

Dα
t h(x, t) =

P∑
i=1

P∑
j=1

aijI
2
i (x)ψj(t)− x

P∑
i=1

P∑
j=1

aijr
2
i (x)ψj(t)

+Dα
t

[
g0(t) + x

(
g1(t)− g0(t)

)]
. (12)

Using (8), (11) and (12) in (4), we attain

P∑
i=1

P∑
j=1

aijI
2
i (x)ψj(t)− x

P∑
i=1

p∑
j=1

aijr
2
i (x)ψj(t) +Dα

t

[
g0(t) + x

(
g1(t)− g0(t)

)]

−

{
P∑
i=1

P∑
j=1

aijψi(x)Iαj (t)+hxx(x, 0)

}
−

{
P∑
i=1

P∑
j=1

aijI
2
i (x)Iαj (t)+f(x)+g0(t)−g0(0)

+x
(
g1(t)−

{ P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t)+g1(0)+g0(t)−g0(0)

})}
+

{
P∑
i=1

P∑
j=1

aijI
2
i (x)Iαj (t)

+f(x)+g0(t)−g0(0)+x

(
g1(t)−


P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t) + g1(0) + g0(t)− g0(0)


)}3

= λ(x, t).

(13)

Solving the equation (13) at the collocation points (xi, tj), i, j = 1, 2, . . . , P , we
attain the Haar wavelet coefficients aij ’s. Using these aij ’s in (11), we get the Haar
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wavelet-based numerical solutions of the equation (4).
In particular, suppose

λ(x, t) = (αx+ x− α− 1)txΓ(α+ 1) + (x2 − x)3tα+1 − tα+1(2 + x2 − x),

f(x) = 0, 0 ≤ x ≤ 1 (14)

and
g0(t) = 0, g1(t) = 0, 0 ≤ t ≤ 1. (15)

Then the exact solution of (4) is h(x, t) = (x2 − x)tα+1 [21].

Table 1. Absolute errors attained by the proposed numerical technique for

α = 0.5, P = 4.

x t The proposed technique Exact Absolute error

0.125 0.125 -0.005139824270813 -0.004833737762017 3.060865e-04
0.375 0.375 -0.054104128600268 -0.053821796106076 2.823324e-04
0.625 0.625 -0.116073253238227 -0.115806066656557 2.671865e-04
0.875 0.875 -0.089603435902945 -0.089522076148400 8.135975e-05

t
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h(
x,

t)

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Numerical solution
Exact solution

Figure 1. Comparison of numerical solutions attained by the proposed
technique with the Exact solution for P = 4 at x = 0.625.

Table 2. Absolute errors attained by the proposed numerical technique for

α = 0.5, P = 8.

x t The proposed technique Exact Absolute error

0.0625 0.0625 -0.000959769646559 -0.000915527343750 4.424230e-05
0.1875 0.1875 -0.012427628352483 -0.012368771025730 5.885733e-05
0.3125 0.3125 -0.037639547262802 -0.037531658557888 1.078887e-04
0.4375 0.4375 -0.071330089682318 -0.071214375499236 1.157142e-04
0.5625 0.5625 -0.103923596668848 -0.103820800781250 1.027959e-04
0.6875 0.6875 -0.122546908425943 -0.122470580942689 7.632748e-05
0.8125 0.8125 -0.111617829217056 -0.111573150430923 4.467879e-05
0.9375 0.9375 -0.053201296456909 -0.053187332330119 1.396413e-05
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t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h(
x,

t)

-0.25

-0.2

-0.15

-0.1

-0.05

0

Numerical solution
Exact solution

Figure 2. Comparison of numerical solutions attained by the proposed

technique with the Exact solution for P = 8 at x = 0.5625.
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0.6

 x
0.8

Exact solution

11
0.8
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0.2
0

-0.15

-0.1

-0.05

-0.25
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 h
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Applying the initial condition and the boundary conditions in (13), we attain

P∑
i=1

P∑
j=1

aijI
2
i (x)ψj(t)− x

P∑
i=1

P∑
j=1

aijr
2
i (x)ψj(t)−

{
P∑
i=1

P∑
j=1

aijψi(x)Iαj (t)

}

−

{
P∑
i=1

P∑
j=1

aijI
2
i (x)Iαj (t)− x

P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t)

}

+

{
P∑
i=1

P∑
j=1

aijI
2
i (x)Iαj (t)− x

P∑
i=1

P∑
j=1

aijr
2
i (x)Iαj (t)

}3

= λ(x, t). (16)
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Eqn.(16) can also be written in matrix form as(
I2
)T
CH −X

(
R2
)T
CH −HTCIα

−
((
I2
)T
CIα −X

(
R2
)T
CIα

)
+
((
I2
)T
CIα −X

(
R2
)T
CIα

)3
= Λ, (17)

where I2 = [I2i (xj)]P×P , Iα = [Iαi (xj)]P×P , R2 = [r2i (xj)]P×P , X = diag(x1, x2, ..., xP ),
Λ = [λ(xi, tj)]P×P . Solving the system (17) at the collocation points (xi, tj),
i, j = 1, 2, . . . , P , we get the Haar wavelet coefficient aij ’s. Using these values aij ’s
in (11), we get the Haar wavelet-based numerical solutions of the equation (4). The
absolute errors incurred by the proposed numerical strategy for P = 4 and P = 8
respectively are exhibited in table 1 and 2. As the absolute errors become smaller
with P increasing in table 1 and 2, we find that the proposed strategy can reach a
higher degree of precision. This affirms that the numerical outcomes accomplished
by the proposed strategy are in acceptable concurrence with the exact solution.

5. Conclusion

The proposed technique is successfully employed to attain the numerical solu-
tions of fractional Cahn-Allen equations. The comparison of exact solutions with
the numerical solutions obtained by the proposed technique and the graphical il-
lustrations show that the proposed technique is very effective, fast and flexible for
fractional Cahn-Allen equations.
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