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CONTROLLABILITY RESULTS FOR FRACTIONAL NEUTRAL

DIFFERENTIAL SYSTEMS WITH NON-INSTANTANEOUS

IMPULSES

VIPIN KUMAR, MARKO KOSTIĆ, MANUEL PINTO

Abstract. The main concern of this manuscript is to investigate some suffi-
cient conditions under which the ABC-fractional neutral dynamic system with

non-instantaneous impulsive conditions is controllable. Many physical prob-
lems require to control the state of the system not only at the final time of
the interval but also at each of the impulses points, i.e., the so-called total
controllability. In this regard, this is the first attempt to establish the total

controllability results for ABC-fractional system. We also establish these re-
sults for the considered system with integral term. The basic technique of our
approach is to reduce the controllability problem into a solvability problem

of an operator equation in some suitable function space and then we prove
the solvability results for the operator equations which in turn imply the con-
trollability of the system. Semi-group theory, functional analysis, measure of
non-compactness and Mönch fixed point theorem have been used to establish

these results. At last, an example is given to validate the obtained analytical
outcomes.

1. Introduction

There are several real world problems in which the state of the system have
some abrupt changes. These abrupt changes are known as the impulsive effect in
the system and the corresponding differential equations are known as the impulsive
differential equations. In the literature, there are mainly two types of impulsive
systems: the first one is the instantaneous impulsive systems, in which the effect of
impulses is active for a very short period of time as compare to the overall duration
of the process, for example in shocks, harvesting and natural disasters [1, 2, 3]; the
second one, we are considering is the non-instantaneous impulsive systems which
were introduced by Hernández in [4], in which the impulsive effect remains active for
a period of time, for instance, in the case of a hyperglycemic patient, an insulin can
be injected. The introduction of the medicine in the circulation system causes an
unexpected change in the systems, trailed by a consistent interaction until the drug
is completely absorbed [4]. For the further details on non-instantaneous impulsive
systems, we may refer e.g. to [5, 6, 7, 8] and the references cited therein.
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The dynamical systems that can be modelled by the fractional differential equa-
tions carried with a non-integer derivative are called the fractional order dynamic
systems. There are many real-applications, for instance, fractal properties, power-
law long-range dependence or power-law nonlocality, which evolves the integrals
and derivatives of fractional orders. In the last few decades, the growth of science
and engineering systems has considerably stimulated the employment of fractional
calculus in various areas of the control theory, for example in controllability, fault
estimation, observability, observer design, stability and stabilization. However, the
applications of fractional calculus and their outcomes vary as much as the defini-
tions of fractional integrals and derivatives, for example, Riesz-Caputo, Grunwald-
Letnikov, Caputo, Riemann-Liouville, Hadamard, Weyl, Chen, and so on. For more
details about fractional calculus see [9, 10] for instance.

Recently, in 2015, Caputo and Fabrizio [11] introduced a new fractional nonlocal
derivative with non-singular kernel known as Caputo-Fabrizio fractional derivative
given by

CFDq
a+z(t) =

M(q)

1− q

∫ t

a

exp

[
− q

1− q
(t− z)

]
z′(z)dz,

where q ∈ (0, 1) and M(q) is a normalization function such that M(0) = 1 = M(1).
This definition made a significant challenge to its realization but soon it discovered
its way into many applications of engineering and science, for example, mechanical
engineering and thermal science. For more details, one can see [12, 13].

A year after, a new definition of nonlocal derivatives with non-singular kernel
relied on the Mittag-Leffler function was introduced by Atangana and Baleanu
[14]. This new definition upheld the Caputo-Fabrizios one relied on the exponential
function. It expands the profundity of the connection between the Mittag-Leffler
function and fractional calculus which leads to significant applications in science
and engineering such as thermal physics, population dynamics, control problems
and so on [15, 16, 17]. In the last five years, many authors considered the ABC-
fractional differential equations and investigated many results such as existence,
stability and data dependence of the solutions [18, 19, 20, 21, 22, 23].

Controllability is a significant idea in modern control theory. In general, control-
lability implies, we can transfer the state of a control system from an arbitrary initial
state to an arbitrary state by using some control function. Over the most recent
couple of years, many authors studied the controllability results for different types
of systems such as functional differential equations, neutral functional differential
equations and impulsive differential equations of integer as well as fractional order,
see for instance [24, 25, 26, 27, 28, 29, 30, 31] and the references cited therein. Very
recently, in [32], the authors considered the ABC-fractional semilinear differential
equations with instantaneous impulsive conditions and investigated the controlla-
bility results by using the Darbo fixed point theorem, measures of noncompactness
with semigroup theory. In [33], the authors extended the controllability results of
[32] for the integro-differential equations with instantaneous impulses by using the
Banach fixed point theorem.

However, the above results cannot be easily extended to the case of neutral sys-
tem with non-instantaneous impulses. Since, in practicality, there is no impulse that
occurs instantaneously rather it is non-instantaneous howsoever time of occurrence
is very small. Therefore, it is beneficial to study a class of differential equations
with non-instantaneous impulses and from the best of the authors knowledge there
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is no article which reported the controllability results for ABC-fractional neutral
dynamic system with non-instantaneous impulses. Motivated from the above dis-
cussion, in this manuscript, we investigate the total controllability results for the
following ABC-fractional neutral dynamic system with non-instantaneous impulses

ABCDq[z(t)− F(t, za(t))] = A[z(t)− F(t, za(t))] + Bu(t) +G(t, zb(t)),

t ∈ (si, ti+1], i = 0, 1, · · · ,m,

z(t) = Ji(t, z(t
−
i )), t ∈ (ti, si], i = 1, · · · ,m, (1)

z(0) = z0,

where ABCDq denote the ABC-fractional derivative of order q ∈ (0, 1), z is the state
variable, za(t) = z(a(t)), zb(t) = z(b(t)), a, b : I = [0, T ] → I with a(t), b(t) ≤ t.
The arbitrary points ti and si satisfy the relations 0 = t0 = s0 < t1 < s1 <
t2 < · · · < sm < tm+1 = T , z(t−i ) = limh→0+ z(ti − h) denotes the left limit of
z(t) at t = ti, A : D(A) ⊂ X → X is the infinitesimal generator of a q-resolvent
family (Sq(t))t≥0, (Tq(t))t≥0 is solution operator defined on a complex Banach space
(X, ∥ · ∥) (for more details, please see [32, 34]) , u(·) in L2([0, T ], U) is the control
function where U is a Banach space. B is a linear and bounded operator from U
into X. F,G, Ji are the given functions which satisfies certain assumptions to be
specified later on.

The primary contribution and advantage of this paper are as follows.

• In the paper, we study the controllability results for a class of ABC-
fractional neutral differential system with non-instantaneous impulses.

• We define a new piecewise control function which control the system not
only at the final time of the interval but also at each of the impulse points,
i.e., we study the total controllability results.

• Also, we establish the total controllability results for the considered problem
with the integral term.

• We use the concept of piecewise continuous mild solution to the proposed
impulsive system for constructing a suitable operator and with the help
of this operator, we derived the controllability results by using the Mönch
fixed point technique in measure of noncompactness.

• At last, we provide an example to show the effectiveness of the obtained
analytical results.

The remainder of the manuscript is structured as follows. In Section 2, we
introduce some fundamental definitions, lemmas and theorems. Section 3 is devoted
to the study of controllability results for the considered impulsive system (1). In
Section 4, we study the system (1) with integral term. In the last Section 5, an
example is given to validate the analytical outcomes of the manuscript.

2. Preliminaries

In this section, we introduce some fundamental definitions, lemmas and impor-
tant results which are often used throughout the manuscript. C(I,X) denotes the
Banach space of all continuous functions from I into X. B(X) denotes the space
of all bounded linear operators from X into X. The space of measurable functions
which are square Bochner integrable with values space X is denoted by L2(I,X).
For any subset A ⊂ X, co(A) denotes its closed convex hull.
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Now, we introduce the space of all piecewise continuous functions by PC(I,X) =
{z : I → X : z ∈ C(∪m

i=0(ti, ti+1], X) and there exists z(t−i ) and z(t+i ), i = 1, · · · ,m
with z(t−i ) = z(ti)}. Clearly, we can seen that PC(I,X) forms a Banach space
under the supremum norm, ∥z∥PC = supt∈I ∥z(t)∥.

Next, we define the ABC-fractional derivative and integral.

Definition 2.1. [14] Let F ∈ H1(a, T ), a < T, be a function. Then, the ABC-
fractional of F at a point t ∈ (0, T ) of order q ∈ (0, 1) is given by

ABCDq
a+F (t) =

B(q)

1− q

∫ t

a

F ′(z)Eq (−ϵ(t− z)q) dz,

where ϵ = q
1−q , Eq(·) is the usual Mittag Leffler function and B(q) = (1− q)+ q

Γ(q)

satisfying B(0) = B(1) = 1 is the normalization function.

Definition 2.2. [14] Let F ∈ H1(a, T ), a < T , be a function. Then, the Atangana-
Baleanu fractional derivative at a point t ∈ (0, T ) of order q ∈ (0, 1) in Riemann-
Liouville sense is given by

ABRDq
a+F (t) =

B(q)

1− q

d

dt

∫ t

a

F (z)Eq (−ϵ(t− z)q) dz.

Definition 2.3. [14] The integral of fractional order associated to the AB derivative
is given by

ABIqa+F (t) =
1− q

B(q)
F (t) +

q

B(q)Γ(q)

∫ t

a

(t− z)q−1F (z)dz.

Next, we define some important properties about the measure of noncompact-
ness.

Definition 2.4. [32] Let D a bounded subset of X. The map β : X → [0,∞)
defined by β(D) = inf{ε > 0 : B ⊆

∪n
i=1 Bi and diameter(Bi) ≤ ε} for B ∈ D, is

called Kuratowski measure of noncompactness.

Throughout the manuscript, Kuratowski measure of noncompactness on the
bounded set D of X, C(I,X) and PC(I,X) is denoted by β(·), βC(·) and βPC(·),
respectively. Moreover, if D ⊂ C(I,X) is bounded, then D(t) is bounded in X and
β(D(t)) ≤ βC(D).

Lemma 2.5. [32] For any bounded subsets A and B of a real Banach space X, the
Kuratowski measure of noncompactness satisfies the following properties

(i) β(B) = 0 ⇐⇒ B is relatively compact in X; (ii) β(B) = β(B).
(iii) β(A+B) ≤ β(A) + β(B); (iv) A ⊂ B =⇒ β(A) ≤ β(B).
(v) β(convB) = β(B); (vi) β(cB) = |c|β(B); c ∈ R; (vii) β(A ∪ B) =

max{β(A), β(B)}.

Definition 2.6. [32] If D ⊂ C([a, b], X) is equicontinuous and bounded over [a, b],
then for t ∈ [a, b], β(D(t)) is continuous and

β(D) = sup
t∈[a,b]

β(D(t)), where D(t) = {z(t) : t ∈ D} ⊂ X.

Lemma 2.7. [32] Let D ⊂ X be bounded. Then, there exists a countable subset
D0 ⊂ D for which the following inequality holds

β(D) ≤ 2β(D0).
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Lemma 2.8. [32] Let D = {un}∞n=1 ⊂ C([a, b], X) be a bounded and countable set.
Then β(D(t)) is Lebesgue integrable on [a, b] and

β

({∫ b

a

un(z)dz

}∞

n=1

)
≤ 2

∫ b

a

β({un(z)}∞n=1)dz.

Next, we define some important semi-group properties which are generally used.
We denote D(A) and σ(A) for the domain and spectrum of A, respectively. The
resolvent of an operator A at a point λ is defined by R(λ,A) = {(λI −A)−1, λ ∈
ρ(A)}, where ρ(A) = {λ ∈ C|(λI − A) : D(A) → X is invertible} called the
resolvent set.

Definition 2.9. [23] A linear and closed operator A is called the sectorial operator
if there exist positive constants c1 > 0, a ∈ R and c ∈ [π/2, π], such that

(1)
∑

(c,a) = {λ ∈ C : λ ̸= c, |arg(λ− 1)| < c} ⊂ ρ(A);

(2) ∥R(λ,A)∥ ≤ c1
|λ− a|

, λ ∈
∑

(c,a).

Theorem 2.10. [32] The mild solution of the Cauchy problem

ABCDqz(t) = Az(t) + F(t, z(t)), q ∈ (0, 1), t ∈ I,

z(0) = z0,

is given by

z(t) = GTq(t)z0 +
KG(1− q)

B(q)Γ(q)

∫ t

0

(t− z)q−1F(z, z(z))dz

+
qG2

B(q)

∫ t

0

Sq(t− z)F(z, z(z))dz,

where G = µ (µI −A)
−1

and K = −ϵA (µI −A)
−1

are linear operators with µ =
B(q)

1− q
and

Tq(t) = Eq(−Ktq) =
1

2πi

∫
Γ

eztzq−1(zqI − K)−1dz,

Sq(t) = tq−1Eq,q(−Ktq) =
1

2πi

∫
Γ

ezt(zqI − K)−1dz,

with F ∈ C(I,X) and Γ is a specific path lying on
∑

(c,a).

Now, using the above Theorem 2.10 and the Definition 2.14 of [23], we can define
the solution of the system (1) as follows.

Definition 2.11. A function z ∈ PC(I,X) is called a mild solution of the system
(1), if z(t) satisfies the initial condition z(0) = z0, the impulsive conditions z(t) =
Ji(t, z(t

−
i )), ∀ t ∈ (ti, si], i = 1, · · · ,m and the following integral equations

z(t) = GTq(t)[z0 − F(0, z0)] + F(t, za(t)) +
KG(1− q)

B(q)Γ(q)

∫ t

0

(t− z)q−1[G(z, zb(z))

+ Bu(z)]dz + qG2

B(q)

∫ t

0

Sq(t− z)[G(z, zb(z)) + Bu(z)]dz, ∀ t ∈ (0, t1], (2)

z(t) = GTq(t− si)[Ji(si, z(t
−
i ))− F(si, za(si))] + F(t, za(t))
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+
KG(1− q)

B(q)Γ(q)

∫ t

si

(t− z)q−1[G(z, zb(z)) + Bu(z)]dz

+
qG2

B(q)

∫ t

si

Sq(t− z)[G(z, zb(z)) + Bu(z)]dz, ∀ t ∈ (si, ti+1], i = 1, · · · ,m.

(3)

The next theorem is the key theorem to prove our main results.

Theorem 2.12. (Mönch fixed point theorem) [35]. Let D be convex and closed
subset of X with z ∈ D. If a continuous operator F : D → D satisfies the following
property : A ⊂ D countable, A ⊂ co(z ∪ F (A)) implies A is relatively compact.
Then F has a fixed point in D.

To prove the main outcomes of this manuscript, we consider the following as-
sumptions.

[A1] : The functions F,G : T0 × X → X,T0 = ∪m
i=0[si, ti+1] is continuous and

there exist positive constants MF,MG, LF and LG such that
[A1a] : ∥F(t, z)∥ ≤ MF and ∥G(t, z)∥ ≤ MG for all z ∈ X, t ∈ T0.
[A1b] : β(F(t,D)) ≤ LFβ(D) and β(G(t,D)) ≤ LGβ(D) for any bounded

sets D ⊂ X and t ∈ T0.
[A2] : The functions Ji : Ii ×X → X, Ii = [ti, si], i = 1, · · · ,m, are continuous

and there exist positive constants MJ and LJ such that
[A2a] : ∥Ji(t, z)∥ ≤ MJ for all z ∈ X, t ∈ Ii.
[A2b] : β(Ji(t,D)) ≤ LJβ(D) for any bounded sets D ⊂ X.

[A3] : The linear operators Wti+1
si : L2(I, U) → X given by

Wti+1
si u =

KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1Bu(z)dz

+
qG2

B(q)

∫ ti+1

si

Sq(ti+1 − z)Bu(z)dz, i = 0, 1, · · · ,m,

have the bounded invertible operators (Wti+1
si )−1, i = 0, 1, · · · ,m, which

take values in L2(I, U)\kerWti+1
si and there exist positive constantsM i

W , i =

0, 1, · · · ,m, such that ∥(Wti+1
si )−1∥ ≤ M i

W .
Also, B is continuous operator from U to X and there exists a positive

constant MB such that ∥B∥ ≤ MB.
[A4] : G,K ∈ B(X) and there exist positive constants MG and MK such that

∥G∥ ≤ MG and ∥K∥ ≤ MK.

Now onwards, we set

∥Tq(t)∥ ≤ MT ; ∥Sq(t)∥ ≤ tq−1MS ; M =

(
MK(1− q)

Γ(q + 1)
+MGMS

)
;

Q0
1 = M0

W

(
LF +

2MMGLGt
q
1

B(q)

)
, d01 =

(
LF +

2MMG(LG +MBQ
0
1)t

q
1

B(q)

)
;

Qi
1 = M i

W

(
MGMT (LJ + LF) + LF +

2MMGLGT
q

B(q)

)
, i = 1, · · · ,m;

di1 =

(
MGMT (LJ + LF) + LF +

2MMG(LG +MBQ
i
1)T

q

B(q)

)
, i = 1, · · · ,m.
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3. Main Results

Definition 3.1. Control system (1) is said to be controllable over I, if for every
z0, zT ∈ X, there exists a piece-wise continuous function u ∈ L2(I,X) such that the
mild solution of (1) satisfies z(0) = z0 and z(T ) = zT .

Definition 3.2. Control system (1) is said to be totally controllable on I, if it is
controllable on [0, t1] and [si, ti+1], i = 1, · · · ,m, i.e., if for every z0, zti+1

∈ X, l =
0, 1, · · · ,m, there exists a piece-wise continuous function u ∈ L2(I,X) such that
the mild solution of (1) satisfies z(0) = z0 and z(ti+1) = zti+1 for i = 0, 1, · · · ,m.

Remark 3.3. From the above two definitions, one can see that if a system is totally
controllable on an interval I, then it is also controllable on I, i.e., Definition 3.2
implies Definition 3.1.

Lemma 3.4. If the assumptions (A1)-(A4) hold, then the control function

u(t) = (Wt1
0 )−1

[
zt1 −GTq(t1)[z0 − F(0, z0)]− F(t1, za(t1))

− KG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1G(z, zb(z))dz

− qG2

B(q)

∫ t1

0

Sq(t1 − z)G(z, zb(z))dz

]
(t), t ∈ (0, t1], (4)

transfers the state z(t) of the system (1) from z0 to zt1 . Further, the control function
u(t) has an estimate ∥u(t)∥ ≤ M0

u on t ∈ (0, t1], where

M0
u = M0

W

[
∥zt1∥+MGMT (∥z0∥+MF) +MF +

MMGt
q
1MG

B(q)

]
.

Proof : By using the control function u(t) given by the equation (4) in the mild
solution z(t) of the system (1) at t = t1, we have

z(t1) = GTq(t1)[z0 − F(0, z0)] + F(t1, za(t1)) +
qG2

B(q)

∫ t1

0

Sq(t1 − z)G(z, zb(z))dz

+
KG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1G(z, zb(z))dz + (Wt1
0 )(Wt1

0 )−1

[
zt1

− F(t1, za(t1))−GTq(t1)[z0 − F(0, z0)]−
qG2

B(q)

∫ t1

0

Sq(t1 − z)G(z, zb(z))dz

− KG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1G(z, zb(z))dz

]
= zt1 .

Also, the estimate for the control function u(t) on t ∈ (0, t1] is calculated as

∥u(t)∥ ≤ M0
W

[
∥zt1∥+MGMT [∥z0∥+MF] +MF

+
MKMGMG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1dz +
qM2

GMGMS

B(q)

∫ t1

0

(t1 − z)q−1dz

]
≤ M0

W

[
∥zt1∥+MGMT [∥z0∥+MF] +MF +

(
MKMGMG(1− q)

B(q)Γ(q)
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+
qM2

GMGMS

B(q)

)
tq1
q

]
= M0

u .

Hence, the result follows.

Lemma 3.5. If the assumptions (A1)-(A4) hold, then for i = 1, · · · ,m, the
control function

u(t) = (Wti+1
si )−1

[
zti+1 −GTq(ti+1 − si)[Ji(si, z(t

−
i ))− F(si, za(si))]

− F(ti+1, za(ti+1))−
KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1G(z, zb(z))dz

− qG2

B(q)

∫ ti+1

si

Sq(ti+1 − z)G(z, zb(z))dz

]
(t), t ∈ (si, ti+1], (5)

transfers the state z(t) of the system (1) from z0 to zti+1 . Further, the control

function u(t) has an estimate ∥u(t)∥ ≤ M i
u on t ∈ (si, ti+1], where

M i
u = M i

W

[
∥zti+1∥+MGMT (MJ +MF) +MF +

MMGt
q
i+1MG

B(q)

]
.

Proof : By using the control function u(t) given by the equation (5) in the mild
solution z(t) of the system (1) at t = ti+1, i = 1, · · · ,m, we have

z(ti+1) = GTq(ti+1 − si)[Ji(si, z(t
−
i ))− F(si, za(si))] + F(ti+1, za(ti+1))

+
KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1G(z, zb(z))dz

+
qG2

B(q)

∫ ti+1

si

Sq(ti+1 − z)G(z, zb(z))dz

+ (Wti+1
si )(Wti+1

si )−1

[
zti+1 −GTq(ti+1 − si)[Ji(si, z(t

−
i ))− F(si, za(si))]

− F(ti+1, za(ti+1))−
KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1G(z, zb(z))dz

− qG2

B(q)

∫ ti+1

si

Sq(ti+1 − z)G(z, zb(z))dz

]
= zti+1 .

Also, the estimate for the control function u(t) on t ∈ (si, ti+1], i = 1, · · · ,m, is
calculated as

∥u(t)∥ ≤ M i
W

[
∥zt1∥+MGMT [∥MJ∥+MF] +MF +

MKMGMG(1− q)

B(q)Γ(q)

×
∫ ti+1

si

(ti+1 − z)q−1dz +
qM2

GMGMS

B(q)

∫ ti+1

si

(ti+1 − z)q−1dz

]
≤ M0

W

[
∥zt1∥+MGMT [∥MJ∥+MF] +MF +

(
MKMGMG(1− q)

B(q)Γ(q)

+
qM2

GMGMS

B(q)

)
tqi+1

q

]
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= M i
u.

Hence, the result follows.

Theorem 3.6. If all the assumptions (A1)-(A4) are fulfilled and

d = max{ max
0≤i≤m

di1, LJ} < 1, (6)

then the system (1) is totally controllable on I.

Proof : Define an operator Ξ : PC(I,X) → X by

(Ξz)(t) = GTq(t)[z0 − F(0, z0)] + F(t, za(t)) +
KG(1− q)

B(q)Γ(q)

∫ t

0

(t− z)q−1[G(z, zb(z))

+ Bu(z)]dz + qG2

B(q)

∫ t

0

Sq(t− z)[G(z, zb(z)) + Bu(z)]dz, ∀ t ∈ (0, t1],

(Ξz)(t) = Ji(t, z(t
−
i )), ∀ t ∈ (ti, si], i = 1, · · · ,m,

(Ξz)(t) = GTq(t− si)[Ji(si, z(t
−
i ))− F(si, za(si))] + F(t, za(t))

+
KG(1− q)

B(q)Γ(q)

∫ t

si

(t− z)q−1[G(z, zb(z)) + Bu(z)]dz

+
qG2

B(q)

∫ t

si

Sq(t− z)[G(z, zb(z)) + Bu(z)]dz,∀t ∈ (si, ti+1], i = 1, · · · ,m,

where u(t) is defined by the equations (4) and (5) for (0, t1] and (si, ti+1], i =
1, · · · ,m, respectively. From the Lemmas 3.4 and 3.5, we can see that z satisfies
z(t1) = zt1 and z(ti+1) = zti+1 , i = 1, · · · ,m, respectively. Clearly, if z is a fixed
point of Ξ, then the system (1) is controllable. Now, we shall show that Ξ has a
fixed point. For the convenience, we divided the proof into the following steps :
Step 1 : Ξ is continuous. For this let {zn}∞n=1 be a sequence in PC(I,X) such
that zn → z as n → ∞ for some z ∈ PC(I,X). Then, for any t ∈ (0, t1], we have

∥(Ξzn)t− (Ξz)t∥ ≤ ∥F(t, zna (t))− F(t, za(t))∥+
MKMG(1− q)

B(q)Γ(q)

×
∫ t

0

(t− z)q−1∥G(z, znb (z))−G(z, zb(z))∥dz

+
MKMGMB(1− q)

B(q)Γ(q)

∫ t

0

(t− z)q−1∥uzn(z)− uz(z)∥dz

+
qM2

G

B(q)

∫ t

0

∥Sq(t− z)∥∥G(z, znb (z))−G(z, zb(z))∥dz

+
qM2

GMBMS

B(q)

∫ t

0

(t− z)q−1∥uzn(z)− uz(z)∥dz. (7)

Furthermore,

∥uzn(z)− uz(z)∥

≤ M0
W

[
MKMG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1∥G(z, znb (z))−G(z, zb(z))∥dz

+
qM2

GMS

B(q)

∫ t1

0

(t1 − z)q−1∥G(z, zb(z))−G(z, zb(z))∥dz
]
. (8)
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Now, using the equations (7), (8) and (A1) along with Lebesgue dominated con-
vergence theorem, we can conclude that, for all t ∈ (0, t1]:

∥(Ξzn)t− (Ξz)t∥ → 0, as n → ∞. (9)

Similarly, for any t ∈ (si, ti+1], i = 1, · · · ,m, we have

∥(Ξzn)t− (Ξz)t∥ ≤ MGMT (∥Ji(t, zn(t−i ))− Ji(t, z(t
−
i ))∥+ ∥F(si, zna (si))

− F(si, za(si))∥) + ∥F(t, zna (t))− F(t, za(t))∥

+
MKMG(1− q)

B(q)Γ(q)

∫ t

si

(t− z)q−1∥G(z, znb (z))−G(z, zb(z))∥dz

+
MKMGMB(1− q)

B(q)Γ(q)

∫ t

si

(t− z)q−1∥uzn(z)− uz(z)∥dz

+
qM2

G

B(q)

∫ t

si

∥Sq(t− z)∥∥G(z, znb (z))−G(z, zb(z))∥dz

+
qM2

GMSMB

B(q)

∫ t

si

(t− z)q−1∥uzn(z)− uz(z)∥dz (10)

and

∥uzn(z)− uz(z)∥ ≤ M i
W

[
MGMT (∥Ji(ti+1, z

n(t−i ))− Ji(ti+1, z(t
−
i ))∥

+ ∥F(si, zna (si))− F(si, za(si))∥)

+ ∥F(ti+1, z
n
a (t))− F(ti+1, za(t))∥+

MKMG(1− q)

B(q)Γ(q)

×
∫ ti+1

si

(ti+1 − z)q−1∥G(z, znb (z))−G(z, zb(z))∥dz

+
qM2

GMS

B(q)

∫ ti+1

si

(t− z)q−1∥G(z, znb (z))−G(z, zb(z))∥dz
]
.

(11)

Now, using the equations (7), (8) and (A1)-(A2) along with Lebesgue dominated
convergence theorem, we can conclude that, for all t ∈ (si, ti+1], i = 1, · · · ,m:

∥(Ξzn)t− (Ξz)t∥ → 0, as n → ∞. (12)

Similarly, for any t ∈ (ti, si], i = 1, · · · ,m, we have

∥(Ξzn)t− (Ξz)t∥ → 0, as n → ∞. (13)

From the equations (9), (12) and (13), for any t ∈ I, we have

∥(Ξzn)− (Ξz)∥PC → 0, as n → ∞.

Hence, Ξ is continuous.
Step 2 : We shall show that Ξ maps B(0, r) into B(0, r), where

r ≥ max{ max
0≤i≤m

Ni
1,MJ},

is a positive number and

N0
1 = MGMT [∥z0∥+MF] +MF +

MMG(MG +MBM
0
u)t

q
1

B(q)
,
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Ni
1 = MGMT [MJ +MF] +MF +

MMG(MG +MBM
i
u)T

q

B(q)
, i = 1, · · · ,m.

For this, let for any t ∈ (0, t1], we have

∥(Ξz)t∥ ≤ MGMT [∥z0∥+MF] +MF +
MKMG(1− q)

B(q)Γ(q)

∫ t

0

(t− z)q−1[∥G(z, zb(z))

+ Bu(z)∥]dz + qM2
G

B(q)

∫ t

0

∥Sq(t− z)∥[∥G(z, zb(z)) + Bu(z)∥]dz

≤ MGMT [∥z0∥+MF] +MF +
MKMG(1− q)(MG +MBM

0
u)t

q
1

B(q)Γ(q + 1)

+
M2

GMS(MG +MBM
0
u)t

q
1

B(q)

= N0
1. (14)

Similarly, for any t ∈ (si, ti+1], i = 1, · · · ,m, we have

∥(Ξz)t∥ ≤ MGMT [MJ +MF] +MF +
MKMG(1− q)

B(q)Γ(q)

∫ t

si

(t− z)q−1[∥G(z, zb(z))

+ Bu(z)∥]dz + qM2
G

B(q)

∫ t

si

∥Sq(t− z)∥[∥G(z, zb(z)) + Bu(z)∥]dz

≤ MGMT [MJ +MF] +MF +
MKMG(1− q)(MG +MBM

i
u)t

q
i+1

B(q)Γ(q)

+
M2

GMS(MG +MBM
i
u)t

q
i+1

B(q)

≤ Ni
1. (15)

Similarly, for any t ∈ (ti, si], i = 1, · · · ,m, we have

∥(Ξz)t∥ ≤ MJ. (16)

From the above equations (14), (15) and (16), for any t ∈ I, we have

∥Ξz∥PC ≤ r.

Hence, Ξ maps B(0, r) into B(0, r).
Step 3 : We shall show that if D ⊂ B(0, r) is countable and

D ⊂ co({a} ∪ Ξ(D)), (17)

where a ∈ B(0, r), then D is relatively compact. Without loss of generality, suppose
that D = {zn}∞n=1. First we show {Ξzn}∞n=1 is equicontinuous. If this is true then
co({a} ∪ Ξ(D)) is also equicontinuous. For this, let for any z ∈ D, τ2, τ1 ∈ (0, t1]
such that τ1 < τ2, we have

∥(Ξz)τ2 − (Ξz)τ1∥ ≤ MG∥Tq(τ2)− Tq(τ1)∥(∥z0∥+MF)∥
+ ∥F(τ2, za(τ2))− F(τ1, za(τ1))∥

+
MKMG(1− q)

B(q)Γ(q)

∥∥∥∥∫ τ2

0

(τ2 − z)q−1[G(z, zb(z)) + Bu(z)]dz

−
∫ τ1

0

(τ1 − z)q−1[G(z, zb(z)) + Bu(z)]dz
∥∥∥∥
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+
qM2

G

B(q)

∥∥∥∥∫ τ2

0

Sq(τ2 − z)[G(z, zb(z)) + Bu(z)]dz

−
∫ τ1

0

Sq(τ1 − z)[G(z, zb(z)) + Bu(z)]dz
∥∥∥∥

≤ MG∥Tq(τ2)− Tq(τ1)∥(∥z0∥+MF)∥+ ∥F(τ2, za(τ2))

− F(τ1, za(τ1))∥+
MKMG(1− q)(MG +MBM

0
u)

B(q)Γ(q)

×
(∫ τ1

0

((τ2 − z)q−1 − (τ1 − z)q−1)dz +

∫ τ2

τ1

(τ2 − z)q−1dz

)
+

qM2
G(MG +MBM

0
u)

B(q)

(∫ τ1

0

∥Sq(τ2 − z)− Sq(τ1 − z)∥dz

+

∫ τ2

τ1

∥Sq(τ1 − z)∥dz
)
. (18)

Similarly, for any z ∈ D, τ2, τ1 ∈ (si, ti+1], i = 1, · · · ,m, such that τ1 < τ2, we have

∥(Ξz)τ2 − (Ξz)τ1∥ ≤ MG∥Tq(τ2 − si)− Tq(τ1 − si)∥(∥MJ +MF)∥
+ ∥F(τ2, za(τ2))− F(τ1, za(τ1))∥

+
MKMG(1− q)

B(q)Γ(q)

∥∥∥∥∫ τ2

si

(τ2 − z)q−1[G(z, zb(z)) + Bu(z)]dz

−
∫ τ1

si

(τ1 − z)q−1[G(z, zb(z)) + Bu(z)]dz
∥∥∥∥

+
qM2

G

B(q)

∥∥∥∥∫ τ2

si

Sq(τ2 − z)[G(z, zb(z)) + Bu(z)]dz

−
∫ τ1

si

Sq(τ1 − z)[G(z, zb(z)) + Bu(z)]dz
∥∥∥∥

≤ MG∥Tq(τ2 − si)− Tq(τ1 − si)∥(MJ +MF)∥+ ∥F(τ2, za(τ2))

− F(τ1, za(τ1))∥+
MKMG(1− q)(MG +MBM

i
u)

B(q)Γ(q)

×
(∫ τ1

si

((τ2 − z)q−1 − (τ1 − z)q−1)dz

+

∫ τ2

τ1

(τ2 − z)q−1dz

)
+

qM2
G(MG +MBM

i
u)

B(q)

×
(∫ τ1

si

∥Sq(τ2 − z)− Sq(τ1 − z)∥+
∫ τ2

τ1

∥Sq(τ1 − z)∥dz
)
.

(19)

Also, for any z ∈ D, τ2, τ1 ∈ (ti, si], i = 1, · · · ,m, such that τ1 < τ2, we have

∥(Ξz)τ2 − (Ξz)τ1∥ ≤ ∥Ji(τ2, z(t−i ))− Ji(τ1, z(t
−
i ))∥. (20)

From the compactness of Tq(t) and Sq(t) for t > 0 along with (A1)-(A3) and the
absolute continuity of the Lebesgue integral, we can see that the right-hand side
of the above inequalities (18), (19) and (20), tends to zero as τ2 → τ1. Therefore,
Ξ(D) is equicontinuous.



JFCA-2023/14(1) CONTROLLABILITY OF FRACTIONAL SYSTEMS WITH IMPULSES 13

Next, by using the Lemma 2.8 and assumption (A1b), we can notice that for
any t ∈ (0, t1],

β({uzn(t)}∞n=1) ≤ M0
Wβ

({
F(t1, z

n
a (t1)) +

KG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1G(z, znb (z))dz

+
qG2

B(q)

∫ t1

0

Sq(t1 − z)G(z, znb (z))dz

]
(t)

}∞

n=1

)
≤ M0

W

(
LF +

2MKMGLG(1− q)tq1
B(q)Γ(q + 1)

+
2M2

GMSLGt
q
1

B(q)

)
βPC({zn}∞n=1)

= Q0
1βPC({zn}∞n=1).

Henceforth, for any t ∈ (0, t1],

β({Ξzn(t)}∞n=1) = β

({
GTq(t)[z0 − F(0, z0)] + F(t, zna (t))

+
KG(1− q)

B(q)Γ(q)

∫ t

0

(t− z)q−1[G(z, znb (z)) + Buzn(z)]dz

+
qG2

B(q)

∫ t

0

Sq(t− z)[G(z, znb (z)) + Buzn(z)]dz

}∞

n=1

)
≤
(
LF +

2MKMG(LG +MBQ
0
1)(1− q)tq1

B(q)Γ(q + 1)

+
2M2

GMS(LG +MBQ
0
1)t

q
1

B(q)

)
βPC({zn}∞n=1)

= d01βPC({zn}∞n=1). (21)

Similarly, for any t ∈ (si, ti+1], i = 1, · · · ,m,

β({uzn(t)}∞n=1) = β

({
(Wti+1

si )−1

[
zti+1 −GTq(ti+1 − si)[Ji(si, z

n(t−i ))

− F(si, z
n
a (si))]− F(ti+1, z

n
a (ti+1))

− KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1G(z, znb (z))dz

− qG2

B(q)

∫ ti+1

si

Sq(ti+1 − z)G(z, znb (z))dz

]
(t)

}∞

n=1

)
≤ M i

W

(
MGMT (LJβ({zn(t−i )}

∞
n=1) + LFβ({zna (si)}∞n=1))

+ LFβ({zna (ti+1)}∞n=1) +
2MKMGLG(1− q)

B(q)Γ(q)

×
∫ ti+1

si

(ti+1 − z)q−1β({znb (z)}∞n=1)dz

+
2qM2

GMSLG

B(q)

∫ ti+1

si

(ti+1 − z)q−1β({znb (z)}∞n=1)dz

)
≤ M i

W

(
MGMT (LJ + LF) + LF +

2MKMGLG(1− q)tqi+1

B(q)Γ(q + 1)
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+
2M2

GMSLGt
q
i+1

B(q)

)
βPC({zn}∞n=1)

≤ Qi
1βPC({zn}∞n=1)

and

β({Ξzn(t)}∞n=1) = β

({
GTq(t− si)[Ji(si, z

n(t−i ))− F(si, z
n
a (si))] + F(t, zna (t))

+
KG(1− q)

B(q)Γ(q)

∫ t

si

(t− z)q−1[G(z, znb (z)) + Buzn(z)]dz

+
qG2

B(q)

∫ t

si

Sq(t− z)[G(z, znb (z)) + Buzn(z)]dz

}∞

n=1

)
≤
(
MGMT (LJ + LF) + LF +

2MKMG(LG +MBQ
i
1)(1− q)tqi+1

B(q)Γ(q + 1)

+
2M2

GMS(LG +MBQ
i
1)t

q
i+1

B(q)

)
βPC({zn}∞n=1)

= di1βPC({zn}∞n=1). (22)

Also, for (ti, si], i = 1, · · · ,m,

β({Ξzn(t)}∞n=1) ≤ LJβPC({zn}∞n=1). (23)

Hence, from the above equations (21), (22) and (23), for any t ∈ I, we have

βPC({Ξzn(t)}∞n=1) ≤ dβPC({zn}∞n=1). (24)

Now, from the equations (6), (17), and (24), we get

βPC({zn}∞n=1) ≤ βPC({Ξzn(t)}∞n=1) ≤ dβPC({zn}∞n=1),

which immediately shows that D is relatively compact.
Now, collecting the above three steps, we can conclude that all the required

conditions of Theorem 2.12 are satisfied. Therefore, Ξ has a fixed point in B(0, r)
and hence, the system (1) is totally controllable on I.

4. Controllability of Integro-Differential Systems

In this section, we establish the total controllability results for the control system
(1) with integral term of the form:

ABCDq[z(t)− F(t, za(t))] = A[z(t)− F(t, za(t))] + Bu(t) +
∫ t

si

κ(t, z)H(z, z(z))dz

+G(t, zb(t)), t ∈ (si, ti+1], i = 0, 1, · · · ,m,

z(t) = Ji(t, z(t
−
i )), t ∈ (ti, si], i = 1, · · · ,m, (25)

z(0) = z0.

Definition 4.1. A function z ∈ PC(I,X) is called a mild solution of the system
(25), if z(t) satisfies the initial condition z(0) = z0, the impulsive conditions z(t) =
Ji(t, z(t

−
i )), ∀ t ∈ (ti, si], i = 1, · · · ,m and the following integral equations

z(t) = GTq(t)[z0 − F(0, z0)] + F(t, za(t)) +
KG(1− q)

B(q)Γ(q)
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×
∫ t

0

(t− z)q−1

[
G(z, zb(z)) + Bu(z) +

∫ z

0

κ(z, τ)H(τ, z(τ))dτ

]
dz

+
qG2

B(q)

∫ t

0

Sq(t− z)

[
G(z, zb(z)) + Bu(z) +

∫ z

0

κ(z, τ)H(τ, z(τ))dτ

]
dz,

∀ t ∈ (0, t1],

z(t) = GTq(t− si)[Ji(si, z(t
−
i ))− F(si, za(si))] + F(t, za(t)) +

KG(1− q)

B(q)Γ(q)

×
∫ t

si

(t− z)q−1

[
G(z, zb(z)) + Bu(z) +

∫ z

si

κ(z, τ)H(τ, z(τ))dτ

]
dz

+
qG2

B(q)

∫ t

si

Sq(t− z)

[
G(z, zb(z)) + Bu(z) +

∫ z

si

κ(z, τ)H(τ, z(τ))dτ

]
dz,

∀ t ∈ (si, ti+1], i = 1, · · · ,m.

We need some more assumptions to establish the controllability results for the
integro control system (25).

[A5] : Function κ : T0×T0 → R is continuous and there exists a positive constant

Mκ such that
∫ t

si
|κ(t, s)|ds ≤ Mκ for i = 0, 1, ...,m.

[A6] : Function H : T0×X → X is continuous and there exist positive constants
MH and LH such that

[A6a] : ∥H(t, z)∥ ≤ MH for all z ∈ X, t ∈ T0.
[A6b] : β(H(t,D)) ≤ LHβ(D) for any bounded sets D ⊂ X and t ∈ T0.

Lemma 4.2. If the assumptions (A1)-(A6) hold, then the control function

u(t) = (Wt1
0 )−1

[
zt1 −GTq(t1)[z0 − F(0, z0)]− F(t1, za(t1))

− KG(1− q)

B(q)Γ(q)

∫ t1

0

(t1 − z)q−1[G(z, zb(z)) +

∫ z

0

κ(z, τ)H(τ, z(τ))dτ ]dz

− qG2

B(q)

∫ t1

0

[Sq(t1 − z)G(z, zb(z)) +

∫ z

0

κ(z, τ)H(τ, z(τ))dτ ]dz

]
(t), (26)

for all t ∈ (0, t1], transfers the state z(t) of the system (25) from z0 to zt1 . Further,

the control function u(t) has an estimate ∥u(t)∥ ≤ M̂0
u on t ∈ (0, t1], where

M̂0
u = M0

W

[
∥zt1∥+MGMT (∥z0∥+MF) +MF +

MMGt
q
1(MG +MκMH)

B(q)

]
.

Proof : This can be proved by using the same technique of Lemma 3.4. Hence, we
omitted the proof.

Lemma 4.3. If the assumptions (A1)-(A6) hold, then for t ∈ (si, ti+1], i =
1, · · · ,m, the control function

u(t) = (Wti+1
si )−1

[
zti+1 −GTq(ti+1 − si)[Ji(si, z(t

−
i ))− F(si, za(si))]

− F(ti+1, za(ti+1))−
KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1G(z, zb(z))dz

− KG(1− q)

B(q)Γ(q)

∫ ti+1

si

(ti+1 − z)q−1

∫ z

si

κ(z, τ)H(τ, z(τ))dτdz
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− qG2

B(q)

∫ ti+1

si

Sq(ti+1 − z)[G(z, zb(z)) +

∫ z

si

κ(z, τ)H(τ, z(τ))dτ ]dz

]
(t),

(27)

transfers the state z(t) of the system (25) from z0 to zti+1 . Further, the control

function u(t) has an estimate ∥u(t)∥ ≤ M̂ i
u on t ∈ (si, ti+1], where

M̂ i
u = M i

W

[
∥zti+1∥+MGMT (MJ +MF) +MF +

MMG + tqi+1(MG +MκMH)

B(q)

]
.

Proof : This can be proved by using the same technique of Lemma 3.5. Hence, we
omitted the proof.

We set

Q̂0
1 = M0

W

(
LF +

2MMGt
q
1(LG +MκLH)

B(q)

)
,

d̂01 =

(
LF +

2MMG(LG +MκLH +MBQ̂0
1)t

q
1

B(q)

)
;

Q̂i
1 = M i

W

(
MGMT (LJ + LF) + LF +

2MMGT
q(LG +MκLH)

B(q)

)
, i = 1, · · · ,m;

d̂i1 =

(
MGMT (LJ + LF) + LF +

2MMG(LG +MκLH +MBQ̂i
1)T

q

B(q)

)
, i = 1, · · · ,m;

N̂0
1 = MGMT [∥z0∥+MF] +MF +

MMG(MG +MκMH +MBM̂0
u)t

q
1

B(q)
;

N̂i
1 = MGMT [MJ +MF] +MF +

MMG(MG +MκMH +MBM̂ i
u)T

q

B(q)
, i = 1, · · · ,m.

Theorem 4.4. If all the assumptions (A1)-(A6) are fulfilled and

d̂ = max{ max
0≤i≤m

d̂i1, LJ} < 1, (28)

then the system (25) is totally controllable on I.

Proof : Define an operator Ξ1 : PC(I,X) → X by

(Ξ1z)(t) = GTq(t)[z0 − F(0, z0)] + F(t, za(t)) +
KG(1− q)

B(q)Γ(q)

×
∫ t

0

(t− z)q−1

[
G(z, zb(z)) + Bu(z) +

∫ z

0

κ(z, τ)H(τ, z(τ))dτ

]
dz

+
qG2

B(q)

∫ t

0

Sq(t− z)

[
G(z, zb(z)) + Bu(z) +

∫ z

0

κ(z, τ)H(τ, z(τ))dτ

]
dz,

∀ t ∈ (0, t1],

(Ξ1z)(t) = Ji(t, z(t
−
i )), ∀ t ∈ (ti, si], i = 1, · · · ,m,

(Ξ1z)(t) = GTq(t− si)[Ji(si, z(t
−
i ))− F(si, za(si))] + F(t, za(t)) +

KG(1− q)

B(q)Γ(q)

×
∫ t

si

(t− z)q−1

[
G(z, zb(z)) + Bu(z) +

∫ z

si

κ(z, τ)H(τ, z(τ))dτ

]
dz
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+
qG2

B(q)

∫ t

si

Sq(t− z)

[
G(z, zb(z)) + Bu(z) +

∫ z

si

κ(z, τ)H(τ, z(τ))dτ

]
dz,

∀ t ∈ (si, ti+1], i = 1, · · · ,m,

where u(t) is defined by the equations (26) and (27) for (0, t1] and (si, ti+1], i =
1, · · · ,m, respectively. From the Lemmas 4.2 and 4.3, we can see that z satisfies
z(t1) = zt1 and z(ti+1) = zti+1 , i = 1, · · · ,m, respectively. Clearly, if z is a fixed
point of Ξ1, then the system (25) is controllable. Since, using the same technique
of Theorem 3.6, one can prove that Ξ1 has a fixed point. Therefore, we are giving
the brief proof of this theorem. By applying the same method as step 1 of Theorem
3.6, we can easily show that Ξ1 is a continuous mapping while by applying the same
method as step 2 of Theorem 3.6, we can show Ξ1 maps B(0, r̂) into B(0, r̂), where

r̂ ≥ max{ max
0≤i≤m

N̂i
1,MJ},

is a positive number. Next, we show that if D̂ ⊂ B(0, r̂) is countable and

D̂ ⊂ co({a} ∪ Ξ(D̂)), (29)

where a ∈ B(0, r̂), then D̂ is relatively compact. Without loss of generality, suppose

that D̂ = {zn}∞n=1. Now, for any z ∈ D̂, τ2, τ1 ∈ I such that τ1 < τ2, one can easily

show that ∥(Ξ1z)τ2−(Ξ1z)τ1∥ → 0 as τ2 → τ1. Therefore, Ξ1(D̂) is equicontinuous.
Also, by using the Lemma 2.8 and assumptions (A1b), (A2b) and (A6b), for any
t ∈ I, we have

βPC({Ξ1z
n(t)}∞n=1) ≤ d̂βPC({zn}∞n=1). (30)

Therefore, from the equations (28), (29) and (30), we get

βPC({zn}∞n=1) ≤ βPC({Ξ1z
n(t)}∞n=1) ≤ d̂βPC({zn}∞n=1),

which immediately shows that D̂ is relatively compact. Thus, we can conclude that
all the required conditions of Theorem 2.12 are satisfied. Therefore, Ξ1 has a fixed
point in B(0, r̂) and hence, the system (25) is totally controllable on I.

5. An Illustrative Example

Consider the following fractional partial differential equation in X = L2(0, π)

ABCDq

[
Z(t, η)− t+ sin(Z(a(t), η))

20et+1

]
=

∂2

∂η2

[
Z(t, η)− t+ sin(Z(a(t), η))

20et+1

]
+ d(η)S(t, η) +

t cos(Z(b(t), η))

10(t+ 2)2
,

t ∈ (0, 0.5] ∪ (0.6, 1], η ∈ [0, π], q ∈ (0, 1),

Z(t, 0) = Z(t, π) = 0, t ∈ I = [0, 1],

Z(t, η) =
1

5et+1

|Z(t, η)|
3 + |Z(t, η)|

, t ∈ I, η ∈ [0, π],

(31)

Z(0, η) = z0, η ∈ [0, π].

Define an operator A by Az = z′′, ∀ z ∈ D(A), where

D(A) = {z ∈ X : z and z′′ are absolutely continuous and z(0) = z(π) = 0}.
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Then, operator A has the following representation

Az =
∞∑

n=1

n2 < z, zn > zn, z ∈ D(A),

where zn(s) =
√
2/π sin(ns), n = 1, 2, 3, ... is the orthogonal set of eigenvectors of

A.
Further, it is known that A is a generator of an analytic semigroup {T (t)}t≥0 in

X which is given by

T (t)z =
∞∑

n=1

e−n2t < z, zn > zn, z ∈ D(A), t > 0.

Clearly, {T (t)}t≥0 is uniformly bounded compact semigroup and hence, the op-
erator R(λ,A) = (λI −A)−1 is compact for each λ ∈ ρ(A). Also, from the subor-
dination principle of solution operator, we have ∥Tq(t)∥ ≤ MT ,∀t ∈ I.

Now, for (t, η) ∈ I × [0, π], B ∈ B(U,X) we set

z(t) = Z(t, ·), i.e., z(t)(η) = Z(t, η), F(t, za(t))(η) =
t+ sin(Z(a(t), η))

20et+1
,

G(t, zb(t))(η) =
t cos(Z(b(t), η))

10(t+ 2)2
, Ji(t, z(t))(η) =

1

5et+1

|Z(t, η)|
3 + |Z(t, η)|

,

Bu(t)(η) = d(η)S(t, η).

With this formulation, the equation (31) can be rewritten in the abstract form (1).
Clearly, we can see that all the assumptions of Theorem 3.6 are hold. Therefore,
based on Theorem 3.6, we can conclude that the system (31) is totally controllable
on I.

Conclusion

We have successfully investigated some sufficient conditions for the controllability
results of an ABC-fractional neutral differential equations with non-instantaneous
impulses. Also, we studied the considered problem with integral term. To estab-
lished these results, mainly we used the measure of noncompactness, Mönch fixed
point theorem, functional analysis along with the semi-group to establish these
results. Also, we have presented an example to validate the outcomes.
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