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POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE

PROBLEM INVOLVING RIEMANN-LIOUVILLE FRACTIONAL

DERIVATIVE

GUOTAO WANG, SANYANG LIU, RAVI P. AGARWAL, LIHONG ZHANG

Abstract. In this paper, by using the lower and upper solutions method

and fixed point theorem on cone, we consider the existence and uniqueness of
positive solution of the integral boundary value problem for nonlinear differ-
ential equation involving Riemann-Liouville fractional derivative. An example
demonstrates the application of our results.

1. Introduction

Fractional-order models are found to be more accurate than integer-order mod-
els, that is, there are more degrees of freedom in the fractional-order models. Frac-
tional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chem-
istry, aerodynamics, electrodynamics of complex medium, polymer rheology, etc.
involves derivatives of fractional order([1]-[5]). Fractional-order differential equa-
tions also serve better for the description of hereditary properties of various ma-
terials and processes than integer-order differential equations. In consequence, the
subject of fractional differential equations is gaining much importance and atten-
tion. For details, see ([6]-[23]) and the references therein.

In present, there are some papers which deal with the existence and multiplicity
of solutions for nonlinear fractional differential equations’ boundary value problems
by means of some fixed point theorems([24]-[35]). By the use of some fixed point
theorems on cones, Bai and Lü[28] and Zhang[36], investigated the existence of
positive solutions for the equation

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

with one of the boundary conditions

u(0) = u(1) = 0,
u(0) + u′(0) = u(1) + u′(0) = 0,
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respectively. The adomian decomposition method is used by Jafari[37] for solving
the problem {

Dα
0+u(t) + µf(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, u(1) = c.

In 2010, by the use of fixed point index theory, Bai[38] obtained existence results
of positive solution for the following nonlinear fractional boundary value problem{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, βu(η) = u(1).

From the above works, we can see a fact, although the fractional boundary value
problems have been studied by some authors, to the best of our knowledge, there
have been a few works using the lower and upper solution method [39, 40]. However,
the Schauder fixed-point theorem cannot ensure the solutions to be positive. Since
only positive solutions are useful for many applications, motivated by the above
works, in this paper, we study the existence and uniqueness of positive solutions of
the following integral boundary value problem{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, u(1) =
∫ 1

0
u(s)ds,

(1)

where f : [0, 1]× [0,∞) → [0,∞) is a continuous function and Dα
0+ is the standard

Riemann-Liouville fractional derivative.

Integral boundary-value problems constitute a very interesting and important
class of problem. They include two, three, multi-point and nonlocal boundary-
value problems as special cases. The theory of integral boundary-value problems
arises in different areas of applied mathematics and physics. For instance, heat
conduction, chemical engineering, underground water flow, and plasma physics can
all be reduced to nonlocal problems with integral boundary conditions. For some
recent work on integral boundary value problems for nonlinear differential equa-
tions of fractional order, see [41]-[52] and the references therein.

To our knowledge, no paper has considered the integral boundary value problem
(1) by using the lower and upper solutions method. Our aim is to study the exis-
tence and uniqueness of positive solution of integral boundary value problem (1).
However, with integral boundary value condition, it will become more complicated.
Therefore, we shall use the lower and upper solutions method and fixed point the-
orem to overcome this difficulty. Some ideas of this paper are from [39, 40]. Our
results generalize and complement some previous findings of [39, 40] and some other
known results.

We organize the rest of this paper as follows: in Section 2, we derive the cor-
responding Green’ function named by fractional Green’ function. Here, we give
some properties of the Green’ function. Consequently problem (1) is reduced to a
equivalent Fredholm integral equation. Then in Section 3, using some fixed-point
theorems, the existence and uniqueness of positive solutions are obtained. An ex-
ample demonstrates the application of our Theorem.



314 G.T. WANG, S.Y. LIU, R.P. AGARWAL,L.H. ZHANG JFCA-2013/4(2)

2. Preliminaries

We need the following lemmas that will be used to prove our main results.
Lemma 2.1 [1] Let α > 0 and u ∈ C(0, 1)∩L(0, 1). Then fractional differential

equation

Dα
0+u(t) = 0

has

u(t) = C1t
α−1 + C2t

α−2 + · · ·+ CN tα−N , Ci ∈ R, i = 1, 2, · · · , N, N = [α] + 1

as unique solution.
Lemma 2.2 [1] Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative

of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t)− C1t

α−1 − C2t
α−2 − · · · − CN tα−N ,

for some Ci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.
In the following, we present the Green function of fractional differential equation

with integral boundary value condition.
Theorem 2.1 Let 1 < α < 2, Assume y(t) ∈ C[0, 1], then the following equation

Dα
0+u(t) + y(t) = 0, 0 < t < 1, (2)

u(0) = 0, u(1) =

∫ 1

0

u(s)ds, (3)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds

where

G(t, s) =


[t(1− s)]α−1(α− 1 + s)− [t− s]α−1(α− 1)

(α− 1)Γ(α)
, 0 ≤ s ≤ t ≤ 1,

[t(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)
, 0 ≤ t ≤ s ≤ 1.

Proof. We may apply Lemma 2.2 to reduce equation (2) to an equivalent integral
equation

u(t) = −Iα0+y(t) + C1t
α−1 + C2t

α−2,

for some C1, C2 ∈ R. Therefore, the general solution of (2) is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+ C1t

α−1 + C2t
α−2. (4)

By u(0) = 0, we can get C2 = 0.

In addition, u(1) = −
∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+ C1, it follows

C1 =

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+

∫ 1

0

u(s)ds. (5)

Take (5) into (4), we have

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+ tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+ tα−1

∫ 1

0

u(s)ds. (6)
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Let
∫ 1

0
u(s)ds = A, by (6), we can get∫ 1

0
u(t)dt = −

∫ 1

0

∫ t

0

(t− s)α−1

Γ(α)
y(s)dsdt+

∫ 1

0
tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)dsdt+A

∫ 1

0
tα−1dt

= −
∫ 1

0

(1− s)α

αΓ(α)
y(s)ds+

∫ 1

0

(1− s)α−1

αΓ(α)
y(s)ds+

A

α

=
∫ 1

0

s(1− s)α−1

αΓ(α)
y(s)ds+

A

α
.

So,

A =
α

α− 1

∫ 1

0

s(1− s)α−1

αΓ(α)
y(s)ds =

∫ 1

0

s(1− s)α−1

(α− 1)Γ(α)
y(s)ds.

Combine with (6), we have

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+ tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+ tα−1

∫ 1

0

s(1− s)α−1

(α− 1)Γ(α)
y(s)ds

= −
∫ t

0

(t− s)α−1

Γ(α)
y(s)ds+

∫ 1

0

[t(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)
y(s)ds

=
∫ t

0

[t(1− s)]α−1(α− 1 + s)− (t− s)α−1(α− 1)

(α− 1)Γ(α)
y(s)ds

+
∫ 1

t

[t(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)
y(s)ds

=
∫ 1

0
G(t, s)y(s)ds.

This complete the proof. �

Remark 2.1 Obviously, the Green function G(t, s) satisfies the following prop-
erties:

(i) G(t, s) > 0, t, s ∈ (0, 1);
(ii) G(t, s) ≤ 2

(α−1)Γ(α) , 0 ≤ t, s ≤ 1.

Lemma 2.3[53] Let D be a subset of the cone P of semi-order Banach space E,
T : D → E be nondecreasing. If there exist x0, y0 ∈ D such that x0 ≤ y0, ⟨x0, y0⟩ ⊂
D and x0, y0 are the lower and upper solutions of equation x− T (x) = 0, then the
equation x − T (x) = 0 has maximum solution and minimum solutions x∗, y∗ in
⟨x0, y0⟩, such that x∗ ≤ y∗, when one of the following conditions holds

(1) P is normal and T is compact continuous;
(2) P is regular and T is continuous;
(3) E is reflexive, P is normal and T is continuous or weak continuous.

3. Main Result

Let E = C[0, 1] be the Banach space endowed with the sup norm and define the
cone P ⊂ E by

P = {u ∈ E | u(t) ≥ 0, 0 ≤ t ≤ 1}. Define the operator T : P → P as follows,

Tu(t) :=

∫ 1

0

G(t, s)f(s, u(s))ds,

then the equation (1) has a solution if and only if the operator T has a fixed point.
We firstly give the definition of lower and upper solutions of the operator T .
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Definition 3.1 Let v(t), w(t) ∈ E, we say that v(t) is called a lower solution of
operator T if

v(t) ≤ Tv(t),

and w(t) is called an upper solution of operator T if

w(t) ≥ Tw(t).

Theorem 3.1 Assume that
(H1) f : [0, 1] × [0,+∞) → [0,+∞) is continuous, f(t, ·) is nondecreasing for

each t ∈ [0, 1], and there exists a positive constant a, such that f(t, ·) is strictly
increasing on [0, a] for each t ∈ [0, 1].

(H2) 0 < lim
u→+∞

f(t, u(t)) < +∞ for each t ∈ [0, 1].

Then the equation (1) has a positive solution.

Proof. We will prove the theorem through four steps.
Step 1: T : P → P is completely continuous.
The operator T : P → P is continuous in view of nonnegativeness and continuity

of G(t, s) and f(t, u).
Let Ω ⊂ P be bounded, which is to say there exists a positive constant M > 0

such that ||u|| ≤ M, ∀u ∈ Ω. Let L = max0≤t≤1,0≤u≤M |f(t, u)|+ 1. Then ∀u ∈ Ω,
we have

|Tu(t)| ≤
∫ 1

0

G(t, s)f(s, u(s))ds ≤ L

∫ 1

0

G(t, s)ds.

Hence T (Ω) is bounded.
For each u ∈ Ω, ∀t1, t2 ∈ [0, 1] satisfy t1 < t2, we have

|Tu(t2)− Tu(t1)| = |
∫ 1

0
G(t2, s)f(s, u(s))ds−

∫ 1

0
G(t1, s)f(s, u(s))ds|

=
∫ t1
0

|G(t2, s)−G(t1, s)|f(s, u(s))ds+
∫ t2
t1

|G(t2, s)−G(t1, s)|f(s, u(s))ds
+
∫ 1

t2
|G(t2, s)−G(t1, s)|f(s, u(s))ds

≤
∫ t1
0

| [t2(1− s)]α−1(α− 1 + s)− (t2 − s)α−1(α− 1)

(α− 1)Γ(α)

− [t1(1− s)]α−1(α− 1 + s)− (t1 − s)α−1(α− 1)

(α− 1)Γ(α)
|f(s, u(s))ds

+
∫ t2
t1

| [t2(1− s)]α−1(α− 1 + s)− (t2 − s)α−1(α− 1)

(α− 1)Γ(α)

− [t1(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)
|f(s, u(s))ds

+
∫ 1

t2
| [t2(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)

− [t1(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)
|f(s, u(s))ds

≤ L

(α− 1)Γ(α)

∫ 1

0
(1− s)α−1(α− 1 + s)ds(tα−1

2 − tα−1
1 )

≤ 2L

(α− 1)Γ(α)
(tα−1

2 − tα−1
1 ).

Since tα−1 is uniformly continuous when t ∈ [0, 1] and 1 < α ≤ 2, it’s easy to

prove that T (Ω) is equicontinuous. The Arzela-Ascoli Theorem implies that T (Ω)
is compact. That is, T : P → P is completely continuous.

Step 2: T is an increasing operator.
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In fact, by (H1), let u1 ≤ u2, we have

Tu1(t) =
∫ 1

0
G(t, s)f(s, u1(s))ds ≤

∫ 1

0
G(t, s)f(s, u2(s))ds ≤ Tu2(t).

Step 3: By (H2), ∃M1 > 0, N > 0 such that u ≥ N , it holds f(t, u(t)) ≤ M1.
On the other hand, by (H1), f : [0, 1] × [0, N ] is continuous, ∃M2 > 0 such that
u ≤ N , it holds f(t, u(t)) ≤ M2. Let M = max{M1,M2}, then we have f(t, u(t)) ≤
M, ∀u ≥ 0.

Now we consider the following equation{
Dα

0+w(t) +M = 0, 0 < t < 1, 1 < α ≤ 2,

w(0) = 0, w(1) =
∫ 1

0
w(s)ds,

(7)

From Theorem 2.1, we have the solution of (7) is

w(t) =
∫ 1

0
G(t, s)Mds ≥

∫ 1

0
G(t, s)f(s, w(s))ds = Tw(t).

which implies that w(t) is an upper solution of the operator T .
On the other hand, it’s obvious that v(t) ≡ 0 is a lower solution of the operator

T , and we have

v(t) ≤ w(t).

Step 4: Since P is a normal cone, Lemma 2.3 implies that T has a fixed point
u ∈ ⟨0, w(t)⟩. Therefore, the equation (1) has a positive solution.

This complete the proof. �

Example 3.1 Consider the fractional differential equation{
D

3
2

0+u(t) + (b+ t) arctan(1 + u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0
u(s)ds,

(8)

where b > 0 is a constant.
Note that arctan(1 + u(t)) <

π

2
and lim

u→+∞
f(t, u(t)) = lim

u→+∞
(b + t) arctan(1 +

u(t)) =
(b+ t)π

2
< +∞ for each t ∈ [0, 1]. Then the conditions (H1) and (H2) hold.

If fact, the solution of problem (8) is equivalent to a fixed point of the operator T ,

here Tu(t) =
∫ 1

0
(b+ s)G(t, s) arctan(1+ u(s))ds. Take w(t) =

π

2

∫ 1

0
G(t, s)(b+ s)ds

and v(t) ≡ 0, then

w(t) ≥
∫ 1

0

G(t, s)f(s, w(s))ds = Tw(t),

which implies w(t) is an upper solution of the operator T . It is obvious that v(t) ≡ 0
is a lower solution of the operator T .

Thus, by Theorem 3.1, we can get that the problem (8) has a positive solution.
Theorem 3.2 Assume that function f satisfies

|f(t, u)− f(t, v)| ≤ a(t)|u− v|, (9)

where t ∈ [0, 1], u, v ∈ [0,∞), a : [0, 1] → [0,∞) is a continuous function. If∫ 1

0

sα−1(1− s)α−1(α− 1 + s)a(s)ds < (α− 1)Γ(α), (10)

then the equation (1) has a unique positive solution.



318 G.T. WANG, S.Y. LIU, R.P. AGARWAL,L.H. ZHANG JFCA-2013/4(2)

Proof. If Tn is a contraction operator for n sufficiently large, then the equation (1)
has a unique positive solution.

In fact, by the definition of Green function G(t, s), for u, v ∈ P , we have the
estimate

|Tu(t)− Tv(t)| =
∫ 1

0
G(t, s)|f(s, u(s))− f(s, v(s))|ds

≤
∫ 1

0
G(t, s)a(s)|u(s)− v(s)|ds

≤
∫ 1

0

[t(1− s)]α−1(α− 1 + s)

(α− 1)Γ(α)
a(s)||u− v||ds

≤ ||u− v||tα−1

(α− 1)Γ(α)

∫ 1

0
(1− s)α−1(α− 1 + s)a(s)ds

Denote K =
∫ 1

0
(1− s)α−1(α− 1 + s)a(s)ds, then

|Tu(t)− Tv(t)| ≤ Ktα−1

(α− 1)Γ(α)
||u− v||.

Similarly,

|T 2u(t)− T 2v(t)| =
∫ 1

0
G(t, s)|f(s, Tu(s))− f(s, Tv(s))|ds

≤
∫ 1

0
G(t, s)a(s)|Tu(s)− Tv(s)|ds

≤
∫ 1

0
G(t, s)a(s)

Ksα−1

(α− 1)Γ(α)
||u− v||ds

≤
∫ 1

0

K[t(1− s)]α−1(α− 1 + s)

(α− 1)2Γ2(α)
a(s)sα−1||u− v||ds

≤ K||u− v||tα−1

(α− 1)2Γ2(α)

∫ 1

0
sα−1(1− s)α−1(α− 1 + s)a(s)ds,

=
KHtα−1

(α− 1)2Γ2(α)
||u− v||

where H =
∫ 1

0
sα−1(1 − s)α−1(α − 1 + s)a(s)ds. By mathematical induction, it

follows

|Tnu(t)− Tnv(t)| ≤ KHn−1tα−1

(α− 1)nΓn(α)
||u− v||,

by (10), for n large enough, we have

KHn−1

(α− 1)nΓn(α)
=

K

(α− 1)Γ(α)
(

H

(α− 1)Γ(α)
)n−1 < 1.

Hence, it holds
||Tnu− Tnv|| < ||u− v||,

which implies Tn is a contraction operator for n sufficiently large, then the equation
(1) has a unique positive solution.

This complete the proof. �
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