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EXISTENCE AND UNIQUENESS RESULT OF SOLUTIONS TO

INITIAL VALUE PROBLEMS OF FRACTIONAL DIFFERENTIAL

EQUATIONS OF VARIABLE-ORDER

SHUQIN ZHANG

Abstract. In this work, an initial value problem is discussed for a fractional
differential equation of variable-order. By means of some analysis techniques

and Arzela-Ascoli theorem, existence result of solution is obtained; Using the
upper solutions and lower solutions and monotone iterative method, unique-
ness existence results of solutions are obtained.

1. Introduction

The fractional operators (fractional derivatives and integrals) refer to the differ-
ential and integral operators of arbitrary order, and fractional differential equations
refer to those containing fractional derivatives. The former are the generalization
of integer-order differential and integral operators and the latter, the generalization
of differential equations of integer order. The fractional operators of variable order,
which fall into a more complex category, are the derivatives and integrals whose
order is the function of certain variables. In recent years, fractional operators and
fractional differential equations of variable order have been applied in engineering
more and more frequently, For the examples and details, see [1]-[14] and the refer-
ences therein. Their extensive applications urgently call for systematic studies on
the existence, uniqueness of solutions to initial value problems of these equations.
Research in this area is at the trailblazing stage and has so far but produced a very
limited number of published papers dealing with relatively simple problems with
limited methods, such as [15], [16].
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The following are several definitions of fractional integral and fractional deriva-
tives of variable-order, which can be founded in [14]:

I
p(t)
a+ f(t) =

∫ t

a

(t− s)p(t)−1

Γ(p(t))
f(s)ds, p(t) > 0, t > a, (1)

where Γ(·) denotes the Gamma function, −∞ < a < +∞, provided that the right-
hand side is pointwise defined.

I
p(t)
a+ f(t) =

∫ t

a

(t− s)p(s)−1

Γ(p(s))
f(s)ds, p(t) > 0, t > a, (2)

provided that the right-hand side is pointwise defined.

I
p(t)
a+ f(t) =

∫ t

a

(t− s)p(t−s)−1

Γ(p(t− s))
f(s)ds, p(t) > 0, t > a, (3)

provided that the right-hand side is pointwise defined.

D
p(t)
a+ f(t) =

dn

dtn
I
n−p(t)
a+ f(t) =

dn

dtn

∫ t

a

(t− s)n−1−p(t)

Γ(n− p(t))
f(s)ds, t > a, (4)

where n−1 < p(t) < n, t > a, n ∈ N , provided that the right-hand side is pointwise
defined.

D
p(t)
a+ f(t) =

dn

dtn
I
n−p(t)
a+ f(t) =

dn

dtn

∫ t

a

(t− s)n−1−p(s)

Γ(n− p(s))
f(s)ds, t > a, (5)

where n−1 < p(t) < n, t > a, n ∈ N , provided that the right-hand side is pointwise
defined.

D
p(t)
a+ f(t) =

dn

dtn
I
n−p(t)
a+ f(t) =

dn

dtn

∫ t

a

(t− s)n−1−p(t−s)

Γ(n− p(t− s))
f(s)ds, t > a, (6)

where n−1 < p(t) < n, t > a, n ∈ N , provided that the right-hand side is pointwise
defined.

In particular, when p(t) is a constant function, i.e. p(t) ≡ q(q is a finite positive

constant), then I
p(t)
a+ , D

p(t)
a+ are the usual Riemann-Liouville fractional calculus[?].

It is well known that fractional calculus Dq
a+, I

q
a+ have some very important proper-

ties, which play very important role in considering existence of solutions of fractional
differential equation denoted by Dq

a+, by means of nonlinear analysis method. Such
as, the following some properties, which can be founded in [17]:

Proposition 1.1.([17]) The equality Iγa+I
δ
a+f(t) = Iγ+δ

a+ f(t), γ > 0, δ > 0 holds
for f ∈ L(a, b).

Proposition 1.2.([17]) The equality Dγ
a+I

γ
a+f(t) = f(t), γ > 0 holds for f ∈

L(a, b).
Proposition 1.3.([17]) Let α > 0. Then the differential equation

Dα
a+u = 0

has unique solution

u(t) = c1(t− a)α−1 + c2(t− a)α−2 + · · ·+ cn(t− a)α−n,

ci ∈ R, i = 1, 2, · · · , n, here n− 1 < α ≤ n.
Proposition 1.4.([17]) Let α > 0, u ∈ L(a, b), Dα

a+u ∈ L(a, b). Then the
following equality holds

Iαa+D
α
a+u(t) = u(t) + c1(t− a)α−1 + c2(t− a)α−2 + · · ·+ cn(t− a)α−n,
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ci ∈ R, i = 1, 2, · · · , n, here n− 1 < α ≤ n.
But, in general, these properties don’t hold for fractional calculus of variable-

order D
p(t)
a+ , I

p(t)
a+ defined by (1)-(6). For example,

I
p(t)
a+ I

q(t)
a+ f(t) ̸= I

p(t)+q(t)
a+ f(t), p(t) > 0, q(t) > 0, f ∈ L(a, b), (7)

where I
p(t)
a+ denote one of fractional integrals defined by (1)-(3).

Example 1.1. Let p(t) = t, 0 ≤ t ≤ 6, q(t) =


2, 0 ≤ t ≤ 2

1, 2 < t ≤ 3,

t, 3 < t ≤ 6,

f(t) = 1, 0 ≤

t ≤ 6. We calculate I
p(t)
0+ f(t) and I

p(t)+q(t)
0+ defined by (1).

I
p(t)
0+ I

q(t)
0+ f(t) =

∫ t

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
f(τ)dτds

=

∫ 2

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds+

∫ t

2

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds

=

∫ 2

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)2−1

Γ(2)
dτds+

∫ t

2

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds

=

∫ 2

0

(t− s)p(t)−1s2

2Γ(p(t))
ds+

∫ t

2

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)q(s)−1

Γ(q(s))
dτds,

I
p(t)+q(t)
0+ f(t) =

∫ t

0

(t− s)p(t)+q(t)−1

Γ(p(t) + q(t))
f(s)ds,

we see that

I
p(t)
0+ I

q(t)
0+ f(t)|t=3 =

∫ 2

0

(3− s)3−1s2

2Γ(3)
ds+

∫ 3

2

(3− s)3−1

Γ(3)

∫ s

0

(s− τ)1−1

Γ(1)
dτds

=
8

5
+

∫ 3

2

(3− s)3−1s

Γ(3)
ds =

5

8
+

9

24
= 1,

I
p(t)+q(t)
0+ f(t)|t=3 =

∫ 3

0

(3− s)p(3)+q(3)−1

Γ(p(s) + q(3))
f(s)ds =

∫ 3

0

(3− s)3+1−1

Γ(3 + 1)
ds =

27

8

we see easily that

I
p(t)
0+ I

q(t)
0+ f(t)|t=3 ̸= I

p(t)+q(t)
0+ f(t)|t=3.

According to (7), we can see that Proposition 1.1− 1.4 don’t hold for D
p(t)
a+ and

I
p(t)
a+ defined by (1)-(6).
Example 1.2. Let 0 < p(t) < 1, t > 0. By calculating, we have that

I
p(t)
0+ 1 =

1

Γ(p(t))

∫ t

0

(t− s)p(t)−1ds =
tp(t)

(p(t))Γ(p(t))
, t > 0,

D
p(t)
0+ I

p(t)
0+ 1 =

d

dt
I
1−p(t)
0+ I

p(t)
0+ 1 =

d

dt

1

Γ(1− p(t))

∫ t

0

(t− s)−p(t)sp(s)

p(s)Γ(p(s))
ds ̸= 1,



JFCA-2013/4 EXISTENCE AND UNIQUENESS RESULT OF SOLUTIONS 85

and

I
p(t)
0+ D

p(t)
0+ 1 = I

p(t)
0+

d

dt
I
1−p(t)
0+ 1 = I

p(t)
0+ (

d

dt

t1−p(t)

(1− p(t))Γ(1− p(t))
) ̸= 1.

Remark 1.1. For fractional integral of variable-order defined by (5)-(6), we

can’t easily calculate out fractional integral I
p(t)
a+ of some functions f(t), for example,

we don’t know that what I
p(t)
a+ 1 =

∫ t

a
(t−s)p(s)−1

Γ(p(s)) ds and I
p(t)
a+ 1 =

∫ t

a
(t−s)p(t−s)−1

Γ(p(t−s)) ds

equal.
Therefore, without those properties like as Propositions 1.1, 12, 1.3 and 1.4, ones

can not transform a fractional differential equation of variable-order into an equiva-
lent integral equation, so that one can consider existence of solutions of a fractional
differential equation of variable-order, by means of nonlinear functional analysis
method.

There also has more complex fractional calculus of variable-order, whose order
function p(t) of (1)-(6) are replaced by p(t, f(t)), please see [1], [15], [16]. In [15],
authors considered the solution existence of the following variable order fractional
differential equations{

D
p(t,x(t))
c+ x(t) = f(t, x(t)), c < t ≤ b

x(c) = x0,
(8)

where D
p(t,x(t))
c+ is a fractional derivative of variable-order defined by

D
p(t,x(t))
c+ x(t) =

d

dt

∫ t

c

(t− s)−p(s,x(s))

Γ(1− p(s, x(s)))
x(s)ds, t > c. (9)

In [15], authors transformed (8) into one equivalent integral equation

x(t) = I
p(t,x(t))
c+ f(t, x(t)) =

∫ t

c

(t− s)p(s,x(s))−1

Γ(p(s, x(s)))
f(s, x(s))ds, c ≤ t ≤ b, (10)

and then, using approximated method, authors obtained existence result of solution
for problem (8) with 1

2 ≤ q(t, x) ≤ 1, c ≤ t ≤ b, x ∈ R.
In my opinion, the problem and analysis techniques are interesting and meaning,

but, there had a critical wrong, that is, the transformation( from (8) to (10)) is

unsuitable, because fractional calculus D
p(t,x(t))
c+ , I

p(t,x(t))
c+ don’t usually have prop-

erties like Propositions 1.3 and 1.4. Among of those analysis, the sequence (6)
has little mistakes, since ones can’t know whether such sequence exists. As well,
the initial value condition x(c) = x0 isn’t suitable when x0 ̸= 0, because, when
p(t, x(t)) is a constant function, i.e. p(t) ≡ q(0 < q < 1 is a finite positive con-

stant), then D
p(t,x(t))
c+ is the usual Riemann-Liouville fractional derivative Dq

c+.
From [17], we know that Riemann-Liouville fractional derivative of order 0 < q < 1

of constant x0 is not zero, but is x0(t−c)−q

Γ(1−q) , t > c, as a result, fractional differen-

tial equation(involving Riemann-Liouville fractional derivative) can not have such
x(c) = x0 initial value condition, but is initial value condition (t − c)1−qx(t)|t=c

or I1−q
c+ x(t)|t=c ( (t− c)1−qx(t)|t=c and I1−q

c+ x(t)|t=c can transform each other, see
[17]). Hence, in some degree, problem (8) is not a suitable problem(expect x0 = 0).

In this paper, based on characters of fractional derivative of variable-order, by
means of some analysis techniques, we will consider existence and uniqueness of
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solution to initial value problems for fractional differential equation of variable-
order(IVP for short){

D
q(t,x(t))
0+ x(t) = f(t, x), 0 < t ≤ T, 0 < T < +∞

x(0) = 0,
(11)

where D
q(t,x(t))
0+ denotes fractional derivative of variable-order defined by (9), 0 <

q(t, x(t)) ≤ q∗ < 1, 0 ≤ t ≤ T, x ∈ R, and f : [0, T ] × R → R is a continuous
function.

The rest of this paper is organized as follows. In Section 2, we give some prepa-
ration results. In Section 3, the existence results of solutions for IVP (11) are
presented. In section 4, uniqueness existence result od solution for a particular case
of IVP(11).

2. Preliminaries

We assume that
(H1) q : [0, T ]×R → (0, q∗], 0 < q∗ < 1, is a continuous function;
(H2) f : [0, T ]×R → R is a continuous function.
It follows from the continuity of compose functions that Γ(q(t, x(t))) is continuous

on [0, T ], when q satisfies assumption condition (H1). The following results will play
very important role in proving our existence result of solution to problems (11).

Let δ is an arbitrary small positive constant.
Lemma 2.1. Let (H1) hold. And let xn, x ∈ C[0, T ], assume that xn(t) →

x(t), t ∈ [0, T ] as n → ∞, then∫ t−δ

0

(t− s)−q(s,xn(s))

Γ(1− q(s, xn(s)))
xn(s)ds →

∫ t−δ

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds, t ∈ [δ, T ], (12)

as n → ∞.
Proof. We see that

if 0 < T ≤ 1, then T−q(s,x(s)) ≤ T−q∗ , (13)

if 1 < T < +∞, then T−q(s,x(s)) < 1. (14)

Thus, for 0 < T < +∞, we let

T ∗ = max{T−q∗ , 1}. (15)

We let

M = max
0≤t≤T

|x(t)|+1,M1 = max
0≤t≤T

|xn(t)|+1, L = max
0≤t≤T,∥xn∥≤M1

| 1

Γ(1− q(t, xn(t)))
|+1.

By the convergence of xn, for
(1−q∗)ε
3LT∗T (ε is arbitrary small positive number), there

exists N0 ∈ N such that

|xn(t)− x(t)| < (1− q∗)ε

3LT ∗T
, t ∈ [0, T ], n ≥ N0. (16)

Since (t − s)−q(s,x(s)), δ ≤ t − s ≤ T , is continuous with respect to its exponent
−q(s, x(s)), for ε

3MLT , when n ≥ n0, it holds

|(t− s)−q(s,xn(s)) − (t− s)−q(s,x(s))| < ε

3MLT
, δ ≤ t− s ≤ T, (17)
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also, by continuity of 1
Γ(1−q(s,x(s))) , for

(1−q∗)ε
3MT∗T , when n ≥ n0, it holds

| 1

Γ(1− q(s, xn(s)))
− 1

Γ(1− q(s, x(s)))
| < (1− q∗)ε

3MT ∗T
, 0 ≤ s ≤ T. (18)

Hence, from (13)-(18), we have that

|
∫ t−δ

0

(t− s)−q(s,xn(s))

Γ(1− q(s, xn(s)))
xn(s)ds−

∫ t−δ

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds|

≤
∫ t−δ

0

| (t− s)−q(s,xn(s))

Γ(1− q(s, xn(s)))
||xn(s)− x(s)|ds

+

∫ t−δ

0

| (t− s)−q(s,xn(s)) − (t− s)−q(s,x(s))

Γ(1− q(s, xn(s)))
||x(s)|ds

+

∫ t−δ

0

|(t− s)−q(s,x(s))|| 1

Γ(1− q(s, xn(s)))
− 1

Γ(1− q(s, x(s)))
||x(s)|ds

≤ L(1− q∗)ε

3LT ∗T

∫ t−δ

0

(t− s)−q(s,xn(s))ds+
MLε

3MLT

∫ t−δ

0

ds

+
M(1− q∗)ε

3MT ∗T

∫ t−δ

0

(t− s)−q(s,x(s))ds

=
(1− q∗)ε

3T ∗T

∫ t−δ

0

T−q(s,xn(s))(
t− s

T
)−q(s,xn(s))ds+

ε

3T

∫ t−δ

0

ds

+
(1− q∗)ε

3T ∗T

∫ t−δ

0

T−q(s,x(s))(
t− s

T
)−q(s,x(s))ds

≤ (1− q∗)ε

3T ∗T

∫ t−δ

0

T ∗(
t− s

T
)−q∗ds+

ε

3T

∫ t−δ

0

ds+
(1− q∗)ε

3T ∗T

∫ t−δ

0

T ∗(
t− s

T
)−q∗ds

=
(1− q∗)ε

3T 1−q∗

∫ t−δ

0

(t− s)−q∗ds+
ε

3T

∫ t−δ

0

ds+
(1− q∗)ε

3T 1−q∗

∫ t−δ

0

(t− s)−q∗ds

=
ε

3T 1−q∗
(t1−q∗ − δ1−q∗) +

ε

3T
(t− δ) +

ε

3T 1−q∗
(t1−q∗ − δ1−q∗)

<
εT 1−q∗

3T 1−q∗
+

Tε

3T
+

εT 1−q∗

3T 1−q∗

=
ε

3
+

ε

3
+

ε

3
= ε,

which implies that (12) holds.
By the similar arguments, we can know that
Lemma 2.2. Let (H2) hold. And let xn, x ∈ C[0, T ], assume that xn(t) →

x(t), t ∈ [0, T ] as n → ∞, then∫ t−δ

0

f(s, xn(s))ds →
∫ t−δ

0

f(s, x(s))ds, t ∈ [δ, T ], (19)

as n → ∞.
Proof. By the convergence of xn, for ζ > 0, there exists N0 ∈ N such that

|xn(t)− x(t)| < ζ, t ∈ [0, T ], n ≥ N0,
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by the continuity of f , for ε
T (where ε is arbitrary small number), when n ≥ N0, it

holds

|f(s, xn(s))− f(s, x(s))| < ε

T
, s ∈ [0, T ].

Thus, we have that

|
∫ t−δ

0

(f(s, xn(s))− f(s, x(s)))ds|

≤
∫ t−δ

0

|f(s, xn(s))− f(s, x(s))|ds

<
ε

T

∫ t−δ

0

ds

=
ε

T
(t− δ)

≤ εT

T
= ε,

which implies that (19) holds.
Lemma 2.3. Assume that (H1) hold. Then for arbitrary fixed x ∈ C[0, T ], the

following expression holds

lim
δ→0

∫ t−δ

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds =

∫ t

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds. (20)

Proof. For arbitrary fixed x ∈ C[0, T ], we let

M = max
0≤t≤T

|x(t)|+ 1, L = max
0≤t≤T,∥x∥≤M

1

Γ(1− q(t, x(t)))
+ 1.

Thus, for arbitrary fixed function x ∈ C[0, T ], for ∀ ε > 0, take δ0 = ( ε(1−q∗)

MLT∗T q∗ )
1

1−q∗ ,
then, when 0 < δ < δ0, by (14, (15),(16), we have that

|
∫ t−δ

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds−

∫ t

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds|

= |
∫ t

t−δ

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds|

= |
∫ t

t−δ

T−q(s,x(s))

Γ(1− q(s, x(s)))
(
t− s

T
)−q(s,x(s))x(s)ds|

≤ ML

∫ t

t−δ

T ∗(
t− s

T
)−q∗ds

=
MLT ∗T q∗

1− q∗
δ1−q∗

<
MLT ∗T q∗

1− q∗
δ1−q∗

0 = ε,

which implies that (20) holds.
Remark 2.1. Assume that (H1), (H2) hold. Obviously, we can know that: for

the arbitrary fixed function x ∈ C[0, T ],

lim
δ→0

∫ t−δ

0

x(s)ds =

∫ t

0

x(s)ds, lim
δ→0

∫ t−δ

0

f(s, x(s))ds =

∫ t

0

f(s, x(s))ds. (21)
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Lemma 2.4.([17]) Let [a, b](∞ < a < b < +∞) be a finite interval and let
AC[a, b] be the space of functions which are absolutely continuous on [a, b]. It is
known that AC[a, b] coincides with the space of primitives of Lebesgue summable
functions:

f(t) ∈ AC[a, b] ⇔ f(t) = c+

∫ t

0

φ(s)ds, φ ∈ L(a, b), c ∈ R, (22)

and therefore an absolutely continuous function f(t) has a summable derivative

f
′
(t) = φ(t) almost everywhere on [a, b].

3. Existence result

In this section, we will consider the existence of solution for IVP (11), by means of
some analysis techniques and Arzela-Ascoli theorem. By the definition of fractional
derivative defined by (9), we see that problem (11) is equivalent to x(0) = 0 and
the following expression∫ t

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x(s)ds = c+

∫ t

0

f(s, x(s))ds, t ∈ [0, T ], (23)

where c ∈ R.
Theorem 3.1. Assume that (H1), (H2) hold. Then IVP (11) exists one solution

x∗ ∈ C[0, T ].
Proof. In order to obtain the existence result of solution IVP (11), we firstly

verify the following sequence has convergent subsequence,

xk(t) =


0, 0 ≤ t ≤ δ,

xk−1(t) +
∫ t−δ

0
(t−s)−q(s,xk−1(s))

Γ(1−q(s,xk−1(s)))
xk−1(s)ds

−
∫ t−δ

0
f(s, xk−1(s))ds, δ < t ≤ T,

(24)

k = 1, 2, · · · , where x0(t) = 0, t ∈ [δ, T ], δ is arbitrary small number.
In order to apply Arzela-Ascoli theorem to consider the existence of convergent

subsequence of sequence xk defined by (24), firstly, we prove the uniformly bounded
of sequence xk on [0, T ].

We find that xk is uniformly bounded on [0, δ]. Now, we will verify sequence xk

is uniformly bounded on [δ, T ]. Let M = max0≤t≤T |f(s, 0)| + 1. Since x0 = 0 is
uniformly bounded on [0, T ], then, for t ∈ [δ, T ], we have that

|x1(t)| = |x0(t) +

∫ t−δ

0

(t− s)−q(s,x0(s))

Γ(2− q(s, x0(s)))
x0(s)ds−

∫ t−δ

0

f(s, 0)ds

= |
∫ t−δ

0

f(s, 0)ds|

≤ M

∫ t−δ

0

ds

≤ MT
.
= M1,

which implies that x1 is uniformly bounded on [δ, T ], together with x1(t) = 0 for
t ∈ [0, δ], we obtain that x1 is uniformly bounded on [0, T ].
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LetMf = max0≤t≤T,∥x1∥≤M1
|f(t, x1)|+1, L = max0≤t≤T,∥x1∥≤M1

| 1
Γ(1−q(t,x1(t)))

|+
1. From (13), (14), (15), for t ∈ [δ, T ], we have that

|x2(t)| ≤ |x1(t)|+
∫ t−δ

0

| (t− s)−q(s,x1(s))

Γ(1− q(s, x1(s)))
||x1(s)|ds+

∫ t−δ

0

|f(s, x1(s))|ds

≤ M1 +M1L

∫ t−δ

0

T−q(s,x1(s))(
t− s

T
)−q(s,x1(s))ds+Mf (T − δ)

≤ M1 +M1L

∫ t−δ

0

T ∗(
t− s

T
)−q∗ds+MfT

= M1 +
M1LT

∗T q∗

1− q∗
(t1−q∗ − δ1−q∗) +MfT

≤ M1 +
M1LT

∗T

1− q∗
+MfT

.
= M2,

which implies that x2 is uniformly bounded on [δ, T ], together with x2(t) = 0 for
t ∈ [0, δ], we obtain that x2 is uniformly bounded on [0, T ]. Continuous this process,
we can obtain that sequence xk is uniformly bounded on [0, T ].

Now, we consider the equicontinuous of sequence xk on [0, T ]. Obviously, x0

is equicontinuous on [0, T ]. Firstly, we can know that function k(t) = at − bt,
t ∈ (−1, 0), 0 < a < b < 1, is decreasing. Indeed, since ln a < ln b < 0 and
at > bt > 0, we have that

k
′
(t) = at ln a− bt ln b < bt ln a− bt ln b = bt(ln a− ln b) < 0,

which implies that k(t) is a decreasing. Thus, for l(s) = ( t1−s
T )−q(s,x(s))− ( t2−s

T )−q(s,x(s))

(where 0 < t1−s
T < t2−s

T < 1), we may look l(s) as the same type as k(s), then l(s)
is decreasing with respect to its exponent −q(s, x(s)).

As well, in the next analysis, we will use the Minkowsk’s inequality: for a, b non
negative, and any R ≥ 0, it holds

(a+ b)R ≤ cR(a
R + bR), where cR = max{1, 2R−1}. (25)

As a result, for a, b non negative, and any 0 < r < 1, it follows from (25) that

(a+ b)r ≤ cr(a
r + br) = max{1, 2r−1}(ar + br) = ar + br. (26)

We let M = max0≤t≤T |f(s, 0)| + 1. For ∀ ε > 0, ∀ t1, t2 ∈ [0, T ], t1 < t2, we
consider result in two cases.

Case I: 0 ≤ t1 ≤ δ < t2 ≤ T . We take η1,I = ε
M , when t2 − t1 < η1,I , we have

that

|x1(t2)− x1(t1)| = |
∫ t2−δ

0

f(s, 0)ds|

≤ M

∫ t2−δ

0

ds

= M(t2 − δ)

≤ M(t2 − t1)

< Mη1,I

= ε.
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Case II: δ ≤ t1 < t2 ≤ T . We take η1,II = ε
M , when t2 − t1 < η1,II , we have that

|x1(t2)− x1(t1)| = |
∫ t1−δ

0

f(s, 0)ds−
∫ t2−δ

0

f(s, 0)ds|

≤
∫ t2−δ

t1−δ

|f(s, 0)|ds

≤ M

∫ t2−δ

t1−δ

ds

= M(t2 − t1)

< Mη1,II

= ε.

These imply that x1(t) is equicontinuous on [0, T ], the same result can be obtained
when t2 < t1.

We letMf = max0≤t≤T,∥x1∥≤M1
|f(s, x1)|+1, L = max0≤t≤T,∥x1∥≤M1

| 1
Γ(1−q(s,x1(s)))

|+
1. For ∀ 3ε

2 > 0 (ε is arbitrary small number), ∀ t1, t2 ∈ [0, T ], t1 < t2, we consider
result in two cases.

Case I: 0 ≤ t1 ≤ δ < t2 ≤ T . We take η2,I = min{η1,I , ( (1−q∗)ε

4M1LT∗T q∗ )
1

1−q∗ , ε
4Mf

},
when t2 − t1 < η2,I , by (13), (14), (15), (26), we have that

|x1(t2)− x1(t1)|

= |x1(t2) +

∫ t2−δ

0

(t2 − s)−q(s,x1(s))

Γ(1− q(s, x1(s)))
x1(s)ds−

∫ t2−δ

0

f(s, x1)ds|

≤ |x1(t2)|+M1L

∫ t2−δ

0

(t2 − s)−q(s,x1(s))ds+Mf

∫ t2−δ

0

ds

≤ |x1(t2)|+M1L

∫ t2−δ

0

T−q(s,x1(s))(
t2 − s

T
)−q(s,x1(s))ds+Mf (t2 − δ)

≤ |x1(t2)|+M1L

∫ t2−δ

0

T ∗(
t2 − s

T
)−q∗ds+Mf (t2 − δ)

= |x1(t2)|+
M1LT

∗T q∗

1− q∗
(t1−q∗

2 − δ1−q∗) +Mf (t2 − δ)

= |x1(t2)− x1(t1)|+
M1LT

∗T q∗

1− q∗
((t2 − δ + δ)1−q∗ − δ1−q∗) +Mf (t2 − δ)

≤ |x1(t2)− x1(t1)|+
M1LT

∗T q∗

1− q∗
((t2 − δ)1−q∗ + δ1−q∗ − δ1−q∗) +Mf (t2 − δ)

= |x1(t2)− x1(t1)|+
M1LT

∗T q∗

1− q∗
(t2 − t1)

1−q∗ +Mf (t2 − t1)

< |x1(t2)− x1(t1)|+
M1LT

∗T q∗

1− q∗
η1−q∗

2,I +Mfη2,I

< ε+
ε

4
+

ε

4

=
3ε

2
.
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Case II: δ ≤ t1 < t2 ≤ T . We take η2,II = min{η1,II , ( (1−q∗)ε
8M1LT∗T q∗ )

1
1−q∗ , ε

4Mf
},

when t2 − t1 < η2,I , by (13), (14), (15), (26) we have that

|x1(t2)− x1(t1)|

= |x1(t2)− x1(t1) +

∫ t2−δ

0

(t2 − s)−q(s,x1(s))

Γ(1− q(s, x1(s)))
x1(s)ds

−
∫ t1−δ

0

(t1 − s)−q(s,x1(s))

Γ(1− q(s, x1(s)))
x1(s)ds−

∫ t2−δ

0

f(s, x1)ds+

∫ t1−δ

0

f(s, x1)ds|

≤ |x1(t2)− x1(t1)|+
∫ t2−δ

t1−δ

| (t2 − s)−q(s,x1(s))

Γ(1− q(s, x1(s)))
||x1(s)|ds

+

∫ t1−δ

0

| 1

Γ(1− q(s, x1(s)))
||(t2 − s)−q(s,x1(s)) − (t1 − s)−q(s,x1(s))||x1(s)|ds

+

∫ t2−δ

t1−δ

|f(s, x1(s))|ds

≤ |x1(t2)− x1(t1)|+M1L

∫ t1−δ

0

((t1 − s)−q(s,x1(s)) − (t2 − s)−q(s,x1(s)))ds+

M1L

∫ t2−δ

t1−δ

(t2 − s)−q(s,x1(s))ds+Mf

∫ t2−δ

t1−δ

ds

= |x1(t2)− x1(t1)|+M1L

∫ t1−δ

0

T−q(s,x1(s))((
t1 − s

T
)−q(s,x1(s)) − (

t2 − s

T
)−q(s,x1(s)))ds

+M1L

∫ t2−δ

t1−δ

T−q(s,x1(s))(
t2 − s

T
)−q(s,x1(s))ds+Mf (t2 − t1)

≤ |x1(t2)− x1(t1)|+M1L

∫ t1−δ

0

T ∗((
t1 − s

T
)−q∗ − (

t2 − s

T
)−q∗)ds

+M1L

∫ t2−δ

t1−δ

T ∗(
t2 − s

T
)−q∗ds+Mf (t2 − t1)

= |x1(t2)− x1(t1)|+
M1LT

∗T q∗

1− q∗
(t1−q∗

1 − δ1−q∗ + 2(t2 − t1 + δ)1−q∗ − t1−q∗

2 − δ1−q∗)

+Mf (t2 − t1)

≤ |x1(t2)− x1(t1)|+
M1LT

∗T q∗

1− q∗
(t1−q∗

2 − 2δ1−q∗ + 2(t2 − t1)
1−q∗ + 2δ1−q∗ − t1−q∗

2 )

+Mf (t2 − t1)

= |x1(t2)− x1(t1)|+
2M1LT

∗T q∗

1− q∗
(t2 − t1)

1−q∗ +Mf (t2 − t1)

< |x1(t2)− x1(t1)|+
2M1LT

∗T q∗

1− q∗
η1−q∗

2,II +Mfη2,II

< ε+
ε

4
+

ε

4

=
3ε

2
.
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These imply that x2(t) is equicontinuous on [0, T ], the same result can be obtained
when t2 < t1. Continue these process, we can obtain that xk, k = 1, 2 · · · , is
equicontinuous on [0, T ].

As well, by the arguments of equicontinuity of xk, we can know that xk ∈ C[0, T ],
k = 1, 2, · · · . Then, from Arzela-Ascoli theorem, sequence xk exists a convergent
subsequence xmk

. From (24), xmk
should satisfy

xmk
(t) =


0, 0 ≤ t ≤ δ,

xmk−1
(t) +

∫ t−δ

0
(t−s)

−q(s,xmk−1
(s))

Γ(1−q(s,xmk−1
(s)))xmk−1

(s)ds

−
∫ t−δ

0
f(s, xmk−1

(s))ds, δ < t ≤ T.

(27)

Now, we will prove that the continuous limit of xmk
, denoted by x∗ is one solution

of IVP (11).
Let k → +∞ in (27), by Lemmas 2.1, 2.2, we have that

x∗(t) =


0, 0 ≤ t ≤ δ,

x∗(t) +
∫ t−δ

0
(t−s)−q(s,x∗(s))

Γ(1−q(s,x∗(s)))x
∗(s)ds

−
∫ t−δ

0
f(s, x∗(s))ds, δ < t ≤ T.

(28)

Thus, we find that,

x∗(t) = 0, 0 ≤ t ≤ δ;

∫ t−δ

0

(t− s)−q(s,x∗(s))

Γ(1− q(s, x∗(s)))
x∗(s)ds−

∫ t−δ

0

f(s, x∗(s))ds = 0, (29)

δ < t ≤ T . In order to verify x∗ is one solution of IVP (11), we let δ → 0 in (29),
by (20), (21), we obtain that

x∗(0) = 0;

∫ t

0

(t− s)−q(s,x∗(s))

Γ(1− q(s, x∗(s)))
x∗(s)ds =

∫ t

0

f(s, x∗(s))ds, 0 < t ≤ T. (30)

It follows from the continuity of f and Lemma 2.4 that
∫ t

0
f(s, x∗(s))ds ∈

AC[0, T ], consequently, from (30), we get∫ t

0

f(s, x∗(s))ds =

∫ t

0

(t− s)−q(s,x∗(s))

Γ(1− q(s, x∗(s)))
x∗(s)ds ∈ AC[0, T ].

As a result, differential on both sides of the second expression in (30), we get

D
q(t,x∗(t))
0+ x∗(t) = f(t, x∗), 0 < t ≤ T, (31)

together with x∗(0) = 0, we see that x∗ is one solution of IVP (11). Thus, we
complete this proof.

4. Unique results

In this section, using the monotone iterative method, we will consider the exis-
tence and unique result of solution to the following particular case of IVP (11),{

D
p(t)
0+ x(t) = f(t, x), 0 < t ≤ T, 0 < T < +∞

x(0) = 0,
(32)

where D
p(t)
0+ denotes fractional derivative of variable-order defined by (5), where

p : [0, T ] → (0, p∗], 0 < p∗ < 1, is a continuous function.
We assume that
(H3) p : [0, T ] → (0, p∗] is continuous, here 0 < p∗ < 1.
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The following result will play very important role in our next analysis.
Lemma 4.1. Let (H3) hold. If x ∈ C[0, T ] and satisfies the relations D

p(t)
0+ x+ d0x ≥ 0, t ∈ (0, T ]

x(0) ≥ 0

(33)

where D
p(t)
0+ denotes fractional derivative of variable-order defined by (5), d0 > 0 is

a constant. Then x ≥ 0 for t ∈ [0, T ].
Proof. We assume that x(t) ≥ 0, t ∈ [0, T ] is false. Then from x(0) ≥ 0, there

exists points t0 ∈ [0, T ], t
′

0 ∈ (0, T ] such that, x(t0) = 0, x(t
′

0) < 0; and that x(t) ≥ 0

for t ∈ [0, t0], x(t) < 0 for t ∈ (t0, t
′

0], and assume that t1 is the first minimal point

of x(t) on [t0, t
′

0].
It follows from the inequality of (33) that

D
p(t)
0+ x(t) ≥ 0, t ∈ [t0, t

′

0],

hence, we have ∫ t

t0

D
p(s)
0+ x(s)ds ≥ 0, t ∈ [t0, t

′

0],

from the definition of fractional derivative of variable order defined by (5), we can
obtain that∫ t

t0

d

ds
(I

1−p(s)
0+ x(s))ds = I

1−p(t)
0+ x(t)− I1−p(t)x(t0) ≥ 0, t ∈ [t0, t

′

0]. (34)

On the other hand, for t ∈ [t0, t
′

0], we have

I
1−p(t)
0+ x(t)− I1−p(t)x(t0) =

∫ t

0

(t− s)−p(s)

Γ(1− p(s))
x(s)ds−

∫ t0

0

(t0 − s)−p(s)

Γ(1− p(s))
x(s)ds

=

∫ t0

0

(t− s)−p(s) − (t0 − s)−p(s)

Γ(1− p(s))
x(s)ds+

∫ t

t0

(t− s)−p(s)

Γ(1− p(s))
x(s)ds

< 0 + 0 = 0,

which contradicts (34). Therefore, we obtain that x(t) ≥ 0, t ∈ [0, T ]. Thus we
complete this proof.

For problem (32), we have the following definitions of upper and lower solutions.
Definition 4.1. A function α ∈ C[0, T ] is called a upper solution of problem

(32), if it satisfies {
D

p(t)
0+ α(t) ≥ f(t, α), t ∈ (0, T ]

α(0) ≥ 0
(35)

Analogously, function β ∈ C[0, T ] is called a lower solution of problem (32), if it
satisfies {

D
p(t)
0+ β(t) ≤ f(t, β), t ∈ (0, T ]

β(0) ≤ 0
(36)

In what follows we assume that

α(t) ≥ β(t), t ∈ [0, T ], (37)

and define that sector

⟨α, β⟩ = ⟨u ∈ C[0, T ];α(t) ≤ u(t) ≤ β(t), t ∈ [0, T ].⟩
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We also assume that f satisfies the following condition

f(t, x1)− f(t, x2) ≥ −d0(x1 − x2), α ≤ x2 ≤ x1 ≤ β, (38)

where d0 ≥ 0 is a constant and α, β ∈ C[0, T ] are lower and upper solutions of
problem (32). Clearly this condition is satisfied with d0 = 0, when f is monotone
nondecreasing in u. In view of (38), the function

F (t, x) = d0x+ f(t, x) (39)

is monotone nondecreasing in x for x ∈ ⟨α, β⟩.
We also suppose that there exists a constant d1 ≤ 0, such that

f(t, x1)− f(t, x2) ≤ d1(x1 − x2), α ≤ x2 ≤ x1 ≤ β, (40)

where α, β ∈ C[0, T ] are lower and upper solutions of problem (32).
The following is existence and uniqueness theorem of solution for (32).
Theorem 4.1. Let (H2), (H3) hold. Assume that α, β ∈ C[0, T ] are lower and

upper solutions of problem (32), such that (37) holds, f also satisfies (38). Then
problem (32) exists one solution in the sector ⟨α, β⟩, as well, if condition (40) holds,
then (32) exists one unique solution in the sector ⟨α, β⟩.

proof. We see that (32) is equivalent to the following problem{
D

p(t)
0+ v + d0v = d0v + f(t, v), t ∈ (0, T ],

v(0) = 0,
(41)

where d0 is the constant in (38). This proof consists of six steps.
Step 1. Constructing sequences {v(k)}, k = 1, 2, · · · as following{

D
p(t)
0+ v(k)(t) + d0v

(k) = d0v
(k−1) + f(t, v(k−1)), t ∈ (0, T ],

v(k)(0) = 0.
(42)

Theorem 3.1 assures that the sequence {v(k)} is well defined, since for each k, we
can obtain result from theorem 3.1 with f(t, v(k))

.
= d0v

(k−1)+ f(t, v(k−1))−d0v
(k)

and q(t, v(k))
.
= p(t). Of particular interest is the sequence obtained from (42) with

a upper solution or lower solution of problem (32) as the initial iteration. Denote

the sequence with the initial iteration v(0) = β by {v(k)} and the sequence with
v(0) = α by {v(k)}.

Step 2. Monotone property of the two sequences.
The sequences {v(k)}, {v(k)} constructed by (41) process the monotone property

α ≤ v(k) ≤ v(k+1) ≤ v(k+1) ≤ v(k) ≤ β, t ∈ (0, T ], (43)

for every k = 1, 2, · · · .
In fact, let r = v(0) − v(1). By (42), (36), (37), (38), and v(0) = β, there has

D
p(t)
0+ r + d0r = (D

p(t)
0+ β + d0β − (d0β + f(t, β))

= D
p(t)
0+ β − f(t, β) ≥ 0, t ∈ (0, T ],

r(0) ≥ 0− 0 = 0.

In view of Lemma 4.1, r ≥ 0 for t ∈ [0, T ], which leads to v(1) ≤ v(0) = β,
t ∈ [0, T ]. A similar argument using the property of a lower solution of (32) gives
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v(1) ≥ v(0) = α, t ∈ [0, T ]. Let r(1) = v(1) − v(1). By (42), (36), (37), (38), there
has

D
p(t)
0+ r(1) + d0r

(1) = d0v
(0) + f(t, v(0))− (d0v

(0) + f(t, v(0)))

= d0(β − α) + f(t, β)− f(t, α)

≥ 0, t ∈ (0, T ],

r(1)(0) = v(1)(0)− v(1)(0) = 0,

Again, in view of Lemma 4.1, r(1) ≥ 0 for t ∈ [0, T ], the above conclusion shows
that

α = v(0) ≤ v(1) ≤ v(1) ≤ v(0) = β, t ∈ [0, T ]

Assume, by induction

α ≤ v(k−1) ≤ v(k) ≤ v(k) ≤ v(k−1) ≤ β, t ∈ (0, T ]. (44)

Then by (42), (44), (38), the function r(k) = v(k) − v(k+1) satisfies the relations

D
p(t)
0+ r(k)(t) + d0r

(k) = d0v
(k−1) + f(t, v(k−1))− (d0v

(k) + f(t, v(k)))

≥ 0, t ∈ (0, T ],

r(k)(0) = 0,

In view of Lemma 4.1, r(k) ≥ 0, that is v(k+1) ≤ v(k) for t ∈ [0, T ]. Similar reasoning

gives v(k) ≤ v(k+1) and v(k+1) ≤ v(k+1) for t ∈ [0, T ]. Hence, the monotone property
(43) follows from the principle of induction.

Step 3. The two sequences constructed by (42) have pointwise limits and satisfy
some relations, that is

lim
k→∞

v(k)(t) = v(t), lim
k→∞

v(k)(t) = w(t), t ∈ [0, T ] (45)

exists and satisfy the relation

α ≤ v(k) ≤ v(k+1) ≤ w ≤ v ≤ v(k+1) ≤ v(k) ≤ β, t ∈ [0, T ] (46)

for every k = 1, 2, · · · .
In fact, By (43), we see that the upper sequence {v(k)} is monotone nonincreas-

ing and is bounded from below and that the lower sequence {v(k)} is monotone
nondecreasing and is bounded from above. Therefore the pointwise limits exist and
these limits are denoted by v and w as in (45). Moreover, by (43), the limits v, w
satisfy (46).

Step 4. To prove that v and w are solutions of initial value problem (32).

Let v(k) be either v(k) or v(k) From the definition of fractional derivative D
p(t)
0+

defined by (5), we see that the equation of (42) may be expressed as and

I
1−p(t)
0+ v(k)(t) + d0I

1
0+v

(k)(t)) = c+ d0I
1
0+v

(k−1)(t) + I10+f(t, v
(k−1)(t)),

where c ∈ R, that is∫ t

0

(t− s)−p(s)

Γ(1− p(s))
v(k)(s)ds+ d0

∫ t

0

v(k)(s)ds = c+ d0

∫ t

0

v(k−1)(s)ds+

∫ t

0

f(s, v(k−1)(s))ds. (47)

Now, we consider the expression∫ t−δ

0

(t− s)−p(s)

Γ(1− p(s))
v(k)(s)ds+ d0

∫ t−δ

0

v(k)(s)ds = c+ d0

∫ t−δ

0

v(k−1)(s)ds+

∫ t−δ

0

f(s, v(k−1)(s))ds. (48)
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where δ > 0 is arbitrary small number. By Lemma 2.1, we know that
∫ t−δ

0
(t−s)−p(s)

Γ(1−p(s)) v
(k)(s)ds ∈

C[δ, T ] with v(0) = α or v(0) = β.
Let k → ∞ in (48) and apply the Lemmas 2.2, 2.3 and the dominated convergence

theorem, v satisfies the integral equation∫ t−δ

0

(t− s)−p(s)

Γ(1− p(s))
v(s)ds+d0

∫ t−δ

0

v(s)ds = c+d0

∫ t−δ

0

v(s)ds+

∫ t−δ

0

f(s, v(s))ds,

that is ∫ t−δ

0

(t− s)−p(s)

Γ(1− p(s))
v(s)ds = c+

∫ t−δ

0

f(s, v(s))ds. (49)

Now let δ → 0 in (49), by (20), (21), we get∫ t

0

(t− s)−p(s)

Γ(1− p(s))
v(s)ds = c+

∫ t

0

f(s, v(s))ds. (50)

It follows from the continuity of f and Lemma 2.4 that c +
∫ t

0
f(s, v(s))ds ∈

AC[0, T ], consequently, from (50), we get

c+

∫ t

0

f(s, v(s))ds =

∫ t

0

(t− s)−p(s)

Γ(1− p(s))
v(s)ds ∈ AC[0, T ].

As a result, differential on two sides of (50), we have that

D
p(t)
0+ v(t) = f(t, v(t)), t ∈ (0, T ]. (51)

We also Let k → ∞ in the second expression of (42), it holds v(0) = 0, this
together with (51), we know that v(t) is a solution of (32). This proves that the

upper sequence {v(k)} converges to a solution v of problem (32), the lower sequence
{v(k)} converges to a solution w of problem (32), and satisfies relation v(t) ≥ w(t),
t ∈ [0, T ].

Step 5 If condition (40) holds, then v = w is unique solution of problem (32).
It is sufficient to prove v(t) ≤ w(t), t ∈ [0, T ], by v(t) ≥ w(t), t ∈ [0, T ] obtained

in Step 4. In fact, by (32) and (40), the function r = w − v satisfies the relations{
D

p(t)
0+ r = −(f(t, v)− f(t, w)) ≥ d1r, t ∈ (0, T ],

r(0) = 0,

then, Lemma 4.1 implies that r(t) ≥ 0, t ∈ [0, T ], this proves w ≥ v, therefore, we
obtain that v = w is unique solution of problem (32). Thus, we complete this proof.
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[14] D. Valério, J.S. Costa, Variable-order fractional derivatives and their numerical approxima-

tions, Signal Processing, 91(2011) 470-483.
[15] A. Razminia, A.F. Dizaji, V.J. Majd, Solution existence for non-autonomous variable-order

fractional differential equations, Mathematical and Computer Modelling, 55(2012) 1106-1117.
[16] R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference

approximation for the variable-order nonlinear fractional diffusion equation, Applied Mathe-

matics and Computation, 2(2009) 435-445.
[17] A . A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differ-

ential Equations, Elsevier B. V., Amsterdam, 2006.

Shuin Zhang
Department of Mathematics, China University of Mining and Technology, Beijing, 100083,

China
E-mail address: zsqjk@163.com


