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EXISTENCE OF WEIGHTED PSEUDO ALMOST

AUTOMORPHIC MILD SOLUTIONS TO FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS

V. KAVITHA, PENG-ZHEN WANG, R. MURUGESU

Abstract. In this paper, we study the existence of weighted pseudo almost

automorphic mild solutions of integro-differential equations with fractional or-
der 1 < α < 2, here A is a linear densely defined operator of sectorial type on
a complex Banach space X. This paper also deals with existence of weighted

pseudo almost automorphic mild solutions of semilinear integro-differential
eqautions with A is the generator of the C0-semigroup. The main results are
obtained by suitable fixed point theorems.

1. Introduction

The origin of fractional calculus goes back to Newton and Leibnitz in the sev-
entieth century. We observe that fractional order can be complex in viewpoint of
pure mathematics and there is much interest in developing the theoretical analysis
and numerical methods to fractional equations, because they have recently proved
to be valuable in various fields of science and engineering. Indeed, we can find
numerous applications in viscoelasticity, electrochemistry, electromagnetism, biol-
ogy and hydrogeology. For example space-fractional diffusion equations have been
used in groundwater hydrology to model the transport of passive tracers carried
by fluid flow in a porous medium [11, 63] or to model activator-inhibitor dynamics
with anomalous diffusion [35]. For details, including some applications and recent
results, see the monographs of Ahn and MacVinisch [9], Gorenflo and Mainardi
[27], Hilfer [36], Kilbas et al. [39], Kiryakova [40], Miller and Ross [52], Podlubny
[58] and Samko et al. [59] and the papers of Agarwal et al. [3, 4, 5, 6], Benchohra
et al. [12], Diethelm et al. [23, 24], El-Borai [14, 15, 16], El-Sayed [60, 61, 62], Chen
et al. [18], Gaul et al. [26], Hu and Wang [37], Mophou et al. [53, 54, 56], Nieto
et al. [7, 10], G.M.N’Guerekata [33], Lakshmikantham [41], Lakshmikantham et al.
[42, 43, 44], Mainardi [48] and the references therein. Mainardi [48] and Mainardi
et al. [49, 50] generalized the diffusion equation by replacing the first time deriva-
tive with a fractional derivative of order α. These authors proved that the process
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changes from slow diffusion to classical diffusion then to diffusion-wave and finally
to classical wave when α increases from 0 to 2. The fundamental solutions of the
Cauchy problems associated to these generalized diffusion equation (0 < α ≤ 2) are
studied in [28, 50, 51].

The study of almost automorphic solutions to fractional differential equation
were initiated by Araya and Lizama [8]. In their work, the authors investigated the
existence and uniqueness of an almost automorphic mild solution of the fractional
differential equation. In [20], the authors Cuevas and Lizama studied the existence
and uniqueness of an almost automorphic mild solution of the fractional differential
equation with A as a linear operator of sectorial negative type on a complex Ba-
nach space. Mophou et al. [55] prove the existence and uniqueness of pseudo almost
automorphic mild solution to autonomous evolution equation. Also Mophou [57]
studied weighted pseudo almost automorphic mild solutions to semilinear fractional
differential equations. Agarwal et al. [2] studied the existence and uniqueness of
a weighted pseudo-almost periodic mild solution to the semilinear fractional differ-
ential equation. Recently, Abbas [1] studied pseudo almost automorphic solutions
of some nonlinear integro-differential equations.

The concept of weighted pseudo almost periodic functions introduced by Diagana
[22] and was generalized by G.M.N’Guerekata et al. [13] to the concept of weighted
pseudo almost automorphic functions. By constructing counterexamples Liang et
al. [47] showed that the decomposition of such functions is not unique in general.
Actually, they proved that the decomposition of weighted pseudo almost periodic
functions as well as weighted pseudo almost automorphic functions is unique if the
space of the ergodic components is translation invariant.

To the best of our knowledge, there is no work reported in the literature on
weighted pseudo almost automorphic fractional integro-differential equations in 1 <
α < 2. To close this gap, motivated by the above mentioned works, the purpose
of this paper is to study existence of weighted pseudo almost automorphic mild
solutions to the following fractional integro-differential equation:

Dα
t x(t) = Ax(t) +Dα−1

t f(t, x(t),Kx(t)), t ∈ R, 1 < α < 2, (1.1)

and Kx(t) =

∫ t

−∞
k(t− s)h(s, x(s))ds,

where A : D(A) ⊂ X → X is a linear densely defined operator of sectorial type
on a complex Banach space (X, ∥.∥), K is a bounded linear operator and k satisfy
|k(t)| ≤ cke

−bt for t ≥ 0 and ck, b are positive constants, f : R × X × X → X is
a weighted pseudo almost automorphic function in t for each x, y ∈ X satisfying
suitable conditions and h : R×X → X is a given function. The fractional derivative
Dα

t is to be understood in Riemann-Liouville sense.
This work is organized as follows. In Section 2, we recall some basic definitions

and preliminary facts of the standard properties of sectorial operators, on almost,
pseudo-almost, weighted pseudo-almost automorphic functions and compactness
criterion in Ch(X) (see Lemma 2.6). In Section 3, we obtain very general results
on the existence of weighted pseudo almost automorphic mild solutions for semi-
linear fractional integro-differential equations. Finally, in section 4, an example is
provided and in section 5, conclusion is given.
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2. Preliminaries and Basic Results

In this section, we introduce notations, definitions, lemmas and preliminary facts
which are used throughout this work.

Let (X, ∥ · ∥) and (Y, ∥ · ∥Y ) be two complex Banach spaces. Let BC(R, X),
(respectively BC(R × Y,X)) denote the collection of all X-valued bounded con-
tinuous functions (respectively, the class of jointly bounded continuous functions
f : R× Y → X). The space BC(R, X) equipped with the sup norm defined by

∥f∥∞ = sup
t∈R

∥f(t)∥

is a Banach space. Let also L(X) be the Banach space of all bounded linear
operators from X into itself endowed with the norm:

∥T∥L(X) = sup{∥Tx∥ : x ∈ X, ∥x∥ ≤ 1}.

The Riemann-Liouville fractional integral of order α > 0 is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

also, the fractional derivative of function f of order α > 0 is defined by

Dα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds.

where Γ(α) is the Gamma function.

Definition 2.1. [30, 64]. Let f : R → X be a bounded continuous function. We
say that f is almost automorphic if for every sequence of real numbers {sn}∞n=1, we
can extract a subsequence {τn}∞n=1 such that:

g(t) := lim
n→∞

f(t+ τn)

is well-defined for each t ∈ R and

lim
n→∞

g(t− τn) = f(t)

for each t ∈ R.

Definition 2.2. [30, 64]. A continuous function f : R× Y × Y → X is said to be
almost automorphic if f(t, x, y) is almost automorphic in t ∈ R uniformly for all
(x, y) ∈ M2, where M2 is any bounded subset of Y × Y .

Clearly when the convergence above is uniform in t ∈ R, f is almost peri-
odic. The function g is measurable, but not continuous in general. Denote by
AA(X)(respectively AA(R×Y ×Y,X)), the set of all almost automorphic function
f : R → X,(respectively f : R × Y × Y → X). Obviously AA(R, X) is a subspace
of BC(R, X). Furthermore AA(R, X) endowed with the sup norm supt∈R ∥f(t)∥ is
a Banach space [30, 32].

Definition 2.3. We define by

AA0(R, X) =
{
ϕ ∈ BC(R, X) : lim

r→∞

1

2r

∫ r

−r

∥ϕ(s)∥ds = 0
}
.
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and by AA0(R× Y × Y,X) the set of all continuous functions f : R× Y × Y → X
which belong to BC(R× Y × Y,X) and satisfy

lim
r→∞

1

2r

∫ r

−r

∥ϕ(s, x, y)∥ds = 0,

uniformly for (x, y) in any bounded subset of Y × Y .

Definition 2.4. A function f ∈ BC(R, X) is called pseudo almost automorphic
function if it can be written as f = g+ϕ, where g ∈ AA(R, X) and ϕ ∈ AA0(R, X).

The functions g and ϕ are called respectively the principle and the ergodic terms
of f .

Definition 2.5. A function f ∈ BC(R × Y × Y,X) is called pseudo almost auto-
morphic in t ∈ R uniformly in (x, y) ∈ Y × Y if it can be written as f = g + ϕ,
where g ∈ AA(R× Y × Y,X) and ϕ ∈ AA0(R× Y × Y,X).

We denote by PAA(R, X)(respectively PAA(R×Y ×Y,X)), the set of all pseudo
almost automorphic function f : R → X,(respectively f : R× Y × Y → X).

Lemma 2.1. [64]. PAA(R, X) equipped with the supremum norm is a Banach
space.

We also refer to [21, 45, 46, 65] for more details on pseudo almost automorphic
functions.

Now, let V be the set of all functions ρ : R → (0,∞) which are positive and
locally integrable over R. For a given r > 0, set

m(r, ρ) :=

∫ r

−r

ρ(x)dx

for each ρ ∈ V . Define

V∞ := {ρ ∈ V : lim
r→∞

m(r, ρ) = ∞}

and

Vb := {ρ ∈ V∞ : ρ is bounded and inf
x∈R

ρ(x) > 0}.

It is clear that Vb ⊂ V∞ ⊂ V .
Now for ρ ∈ V∞ define

PAA0(X, ρ) := {f ∈ BC(R, X) : lim
r→∞

1

m(r, ρ)

∫ r

−r

∥f(s)∥ρ(s)ds = 0}.

Similarly we define PAA0(R × Y × Y, ρ) as the collection of all functions f :
R× Y × Y → X which are jointly continuous and satisfy{

f(·, x, y) is bounded for each (x, y) ∈ Y × Y,

limr→∞
1

m(r,ρ)

∫ r

−r
∥f(s, x, y)∥ρ(s)ds = 0 uniformly in (x, y) ∈ Y × Y.

Definition 2.6. Let ρ ∈ V∞. A function f ∈ BC(R, X) (respectively f ∈ BC(R ×
Y × Y,X)) is called weighted pseudo almost automorphic if it can be decomposed
as f = g + ϕ, where g ∈ AA(R, X)(respectively AA(R × Y × Y,X)) and ϕ ∈
PAA0(X, ρ)(respectively PAA0(R× Y × Y, ρ).

We denote by WPAA(R, ρ)(respectively WPAA(R × Y × Y, ρ)), the set of all
such functions.
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Remark 2.1. [13]. When ρ = 1, we obtain the standard spaces PAA(X) and
PAA(R× Y × Y,X).

Definition 2.7. A subset P of BC(R, X) is said to be translation-invariant if for
any ϕ(·) ∈ P we have ϕ(·+ τ) ∈ P for any τ ∈ R.

Example 1. PAA0(X, ρ) is translation-invariant for any ρ ∈ Vb.

Theorem 2.1. [47] Let ρ ∈ V∞. Assume that PAA0(X, ρ) is translation-invariant.
Then the decomposition of a weighted pseudo almost automorphic function is unique.

Remark 2.2. Note that Theorem 2.1 does not hold in general without the assump-
tion “PAA0(X, ρ) is translation-invariant” see [47][Remark 3.3].

From now on, we assume that PAA0(X, ρ) is translation-invariant in the sense
that if ϕ(·) ∈ PAA0(X, ρ), then ϕ(·+ τ) ∈ PAA0(X, ρ) for any fixed τ .

Lemma 2.2. [64]. Assume that g : R → X is an almost automorphic function, fix
t0 ∈ R, ϵ > 0 and write

Bϵ = {τ ∈ R, ∥g(t0 + τ)− g(t0)∥ < ϵ}.

Then, there exists s1, s2, ..., sm ∈ R such that

∪m
i=1(si +Bϵ) = R.

Lemma 2.3. [57]. Let ρ ∈ V∞. If f = g + ϕ with g ∈ AA(R, X) and ϕ ∈
PAA0(X, ρ), then g(R) ⊂ f(R).

Lemma 2.4. [57]. Let ρ ∈ V∞ and f ∈ BC(R, X). Then f ∈ PAA0(X, ρ) if and
only if for every ϵ > 0,

lim
r→∞

1

m(r, ρ)

∫
Mr,ϵ(f)

ρ(t)dt = 0,

where Mr,ϵ(f) := {t ∈ [−r, r]/∥f(t)∥ ≥ ϵ}.

Theorem 2.2. [57]. Let ρ ∈ V∞. Then (WPAA(X, ρ), ∥·∥WPAA(X,ρ)) is a Banach
space with the supremum norm given by

∥f∥WPAA(X,ρ) = sup
t∈R

∥f(t)∥.

Definition 2.8. [19]. A closed linear operator (A,D(A)) with dense domain D(A)
in a Banach space X is said to be sectorial of type ω and angle θ if there are
constants ω ∈ R, θ ∈ (0, π

2 ), M > 0 such that its resolvent exists outside the sector

ω +Σθ := {λ+ ω : λ ∈ C, | arg(−λ)| < θ}, (2.1)

∥(λ−A)−1∥ ≤ M

|λ− ω|
, λ /∈ ω +Σθ. (2.2)

Definition 2.9. Let 1 < α < 2. Let A be a closed and linear operator with domain
D(A) defined on a Banach space X. We say that A is the generator of a solution
operator if there exist ω ∈ R and a strongly continuous functions Sα : R+ → L(X)
such that {λα : Re λ > ω} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∫ ∞

0

e−λtSα(t)xdt, Re λ > ω, x ∈ X.
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In [19], Cuesta proves that if A is sectorial of type ω ∈ R with 0 ≤ θ < π(1−α/2),
then A is a generator of a solution operator given by

Sα(t) :=
1

2πi

∫
G
eλtλα−1(λα −A)−1dλ, t ≥ 0

with G a suitable path lying outside the sector ω + Σ0. Furthermore he shows that
the following Lemma holds.

Lemma 2.5. [19][Theorem 1]. Let A : D(A) ⊂ X → X be a sectorial operator in
a complex Banach space X, satisfying hypothesis (2.1) and (2.2), for some M >
0, ω < 0 and 0 ≤ θ < π(1 − α/2). Then there exists C(θ, α) > 0 depending solely
on θ and α, such that

∥Sα(t)∥L(X) ≤
C(θ, α)M

1 + |ω|tα
, t ≥ 0. (2.3)

Now, we recall a useful compactness criterion.
Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R and

h(t) → ∞ as |t| → ∞. We consider the space

Ch(X) =

{
u ∈ C(R, X) : lim

|t|→∞

u(t)

h(t)
= 0

}
.

Endowed with the norm ∥u∥h = supt∈R
∥u(t)∥
h(t) , it is a Banach space (see[34]).

Lemma 2.6. [66, 34]. A subset K
′ ⊂ Ch(X) is a relatively compact set if it verifies

the following conditions:

(c-1) The set K
′
(t) = {u(t) : u ∈ R} is relatively compact in X for each t ∈ R.

(c-2) The set K
′
is equicontinuous.

(c-3) For each ϵ > 0 there exists L
′
> 0 such that ∥u(t)∥ ≤ ϵh(t) for all u ∈ R

and all |t| > L
′
.

Lemma 2.7. [29][Leray-Schauder Alternative Theorem]. Let D be a closed convex

subset of a Banach space X such that 0 ∈ D. Let F
′
: D → D be a completely

continuous map. Then the set {x ∈ D : x = λF
′
(x), 0 < λ < 1} is unbounded or

the map F
′
has a fixed point in D.

3. Weighted pseudo almost automorphic mild solutions

Before starting our main results in this section, we recall the definition of the
mild solution to (1.1).

Definition 3.1. [2]. Assume that A generates an integrable solution operator Sα(t).
A continuous function x : R → X satisfying the integral equation

x(t) =

∫ t

−∞
Sα(t− s)f

(
s, x(s),Kx(s)

)
ds, t ∈ R

is called a mild solution on R to (1.1).

We make the following assumptions:

(H1) f(t, x, y) is uniformly continuous on any bounded subset M2 ⊂ X × X
uniformly in t ∈ R.

(H2) g(t, x, y) is uniformly continuous on any bounded subset M2 ⊂ X × X
uniformly in t ∈ R.
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(H3) A is a sectorial operator of type ω < 0.
(H4) There exist constant Lf such that

∥f(t, x1, y1)− f(t, x2, y2)∥ ≤ Lf

[
∥x1 − x2∥+ ∥y1 − y2∥

]
for each xi, yi ∈ X, i = 1, 2.

(H5) The function h : R×X → X is a weighted pseudo almost automorphic in
t uniformly in x ∈ X and satisfies

∥h(t, x)− h(t, y)∥ ≤ L
′

f∥x− y∥ for each x, y ∈ X.

Lemma 3.1. Let ρ ∈ V∞ and f = g + ϕ ∈ WPAA(R × X × X, ρ). Assume
that (H1), (H2) are satisfied. Then the function defined by L(·) := f(·, u(·), v(·)) ∈
WPAA(X, ρ) if u, v ∈ WPAA(X, ρ).

Proof. We have f = g+ϕ, where g ∈ AA(R×X×X,X) and ϕ ∈ PAA0(R×X×X, ρ)
and u = u1 + u2, v = v1 + v2 where u1, v1 ∈ AA(R, X) and u2, v2 ∈ PAA0(X, ρ).

Now, the function f can be decomposed as

f(t, u(t), v(t))

= g(t, u1(t), v1(t)) + f(t, u(t), v(t))− g(t, u1(t), v1(t))

= g(t, u1(t), v1(t)) + f(t, u(t), v(t))− f(t, u1(t), v1(t)) + ϕ(t, u1(t), v1(t)).

Define

G(t) = g(t, u1(t), v1(t)), F (t) = f(t, u(t), v(t))− f(t, u1(t), v1(t)),

H(t) = ϕ(t, u1(t), v1(t)).

Then f(t, u(t), v(t)) = G(t) + F (t) +H(t).
Using the assumption (H2), G(t) ∈ AA(R, X) by [45] (Lemma 2.2).

Next we prove that F ∈ PAA0(X, ρ).
For this, it is enough to show that limr→∞

1
m(r,ρ)

∫
Mr,ϵ(F )

ρ(t)dt = 0.

By Lemma 2.3, u1(R) × v1(R) ⊂ u(R) × v(R) which is a bounded set. Using

hypothesis (H1) with M2 = u(R) × v(R), we say that for every ϵ > 0 there exists
δ > 0 such that

∥u− u1∥+ ∥v − v1∥ < 2δ =⇒ ∥f(t, u(t), v(t))− f(t, u1(t), v1(t))∥ < ϵ, ∀ t ∈ R.
Thus, we obtain,

Mr,ϵ(F ) = Mr,ϵ

(
f(t, u(t), v(t))− f(t, u1(t), v1(t))

)
⊂ Mr,δ(u− u1) ∪Mr,δ(v − v1)

= Mr,δ(u2) ∪Mr,δ(v2).

Consequently,

1

m(r, ρ)

∫
Mr,ϵ(F )

ρ(t)dt ≤ 1

m(r, ρ)

∫
Mr,δ(u2)

ρ(t)dt+
1

m(r, ρ)

∫
Mr,δ(v2)

ρ(t)dt.

By using Lemma 2.4, we have,

lim
r→∞

1

m(r, ρ)

∫
Mr,δ(u2)

ρ(t)dt = lim
r→∞

1

m(r, ρ)

∫
Mr,δ(v2)

ρ(t)dt = 0.

Since u2, v2 ∈ PAA0(X, ρ), then by Lemma 2.4,

lim
r→∞

1

m(r, ρ)

∫
Mr,ϵ(F )

ρ(t)dt = 0.
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Thus, F ∈ PAA0(X, ρ).
Finally, it remains to show that H ∈ PAA0(X, ρ).
We have u1([−r, r])× v1([−r, r]) is compact since u1 and v1 are continuous on R

as almost automorphic functions. So the function g being in AA(R×X×X,X), g is
uniformly continuous on [−r, r]×u1([−r, r])×v1([−r, r]). Then it follows from (H1)
that ϕ(t, x, y) is uniformly continuous in (u1, v1) ∈ u1([−r, r])×v1([−r, r]) uniformly
in t ∈ [−r, r]. Thus for any ϵ > 0, there exists δ > 0 such that (x1, y1), (x2, y2) ∈
u1([−r, r])× v1([−r, r]) and ∥x1 − x2∥+ ∥y1 − y2∥ < δ imply that

∥ϕ(t, x1, y1)− ϕ(t, x2, y2)∥ <
ϵ

2
∀ t ∈ [−r, r]. (3.1)

On the other hand, since u1([−r, r])× v1([−r, r]) is compact, one can find balls
Ok with (αk, βk) ∈ u1([−r, r])× v1([−r, r]), k = 1, 2, · · · ,m and radius less than δ
such that u1([−r, r])× v1([−r, r]) ⊂ ∪m

k=1Ok.
Then the sets Uk := {t ∈ [−r, r]/(u1(t), v1(t)) ∈ Ok}, k = 1, 2, · · · ,m are open

in [−r, r] and [−r, r] = ∪m
k=1Uk.

Define Vk by

V1 = U1 Vk = Uk − ∪k−1
k=1Uk, 2 ≤ k ≤ m.

Then it is clear that,

Vi ∩ Vj = ∅, if i ̸= j, 1 ≤ i, j ≤ m.

So, we get

L1 : = {t ∈ [−r, r]/∥H(t)∥ ≥ ϵ}
= {t ∈ [−r, r]/∥ϕ(t, u1(t), v1(t))∥ ≥ ϵ}
⊂ ∪m

k=1{t ∈ Vk/∥ϕ(t, u1(t), v1(t))− ϕ(t, αk, βk)∥+ ∥ϕ(t, αk, βk)∥ ≥ ϵ}

⊂ ∪m
k=1

({
t ∈ Vk/∥ϕ(t, u1(t), v1(t))− ϕ(t, αk, βk)∥ ≥ ϵ

2

}
∪
{
t ∈ Vk/∥ϕ(t, αk, βk)∥ ≥ ϵ

2

})
.

From (3.1), it follows that,{
t ∈ Vk/∥ϕ(t, u1(t), v1(t))− ϕ(t, αk, βk)∥ ≥ ϵ

2

}
= ∅, k = 1, 2, · · · ,m.

Thus, if we set Mr, ϵ2
(ϕk) := Mr, ϵ2

(ϕ(t, αk, βk)), then

Mr,ϵ(H) ⊂ ∪m
k=1Mr, ϵ2

(ϕk)

and

1

m(r, ρ)

∫
Mr,ϵ(H)

ρ(t)dt ≤
m∑

k=1

1

m(r, ρ)

∫
Mr, ϵ

2
(ϕk)

ρ(t)dt.

And since ϕ ∈ PAA0(X ×X, ρ), we have

lim
r→∞

1

m(r, ρ)

∫
Mr, ϵ

2
(ϕk)

ρ(t)dt = 0, k = 1, 2, · · · ,m,

it follows that

lim
r→∞

1

m(r, ρ)

∫
Mr,ϵ(H)

ρ(t)dt = 0.
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According to Lemma 2.4, we have

H(t) = ϕ(t, u1(t), v1(t)) ∈ PAA0(X, ρ).

This completes the proof. �

Corollary 3.1. f = g + ϕ ∈ WPAA(R×X ×X, ρ) where ρ ∈ V∞ assume both f
and g are Lipschitzian in (x, y) ∈ X ×X uniformly in t ∈ R. Then the Nemytskii
operator L(·) := f(·, u(·), v(·)) ∈ WPAA(X, ρ) if u, v ∈ WPAA(X, ρ).

Lemma 3.2. Let ρ ∈ V∞ and f = g + ϕ ∈ WPAA(R ×X ×X, ρ). Assume that
(H1), (H2) are satisfied. Then the function defined by ϕ(·) := f(·, x(·),Kx(·)) ∈
WPAA(X, ρ) if x ∈ WPAA(X, ρ).

Proof. Let us observe that if x ∈ WPAA(X, ρ) then x = x1 + x2 where x1 ∈
AA(R, X) and x2 ∈ PAA0(X, ρ). SinceK is a bounded and linear operator onX, it
is easy to prove that Kx = Kx1+Kx2 are also bounded and Kx2(·) ∈ PAA0(X, ρ).
Therefore by [30], Kx1(·) ∈ AA(R, X), we deduce that Kx(·) ∈ WPAA(X, ρ).
Hence in view of Lemma 3.1, we have ϕ(·) ∈ WPAA(X, ρ). �

Lemma 3.3. Let f = g+ϕ ∈ WPAA(X, ρ) where ρ ∈ V∞ with g ∈ AA(R, X), ϕ ∈
PAA0(X, ρ). Then Q(t) :=

∫ t

−∞ Sα(t− s)f(s)ds ∈ WPAA(X, ρ).

Proof. Let Q(t) = R(t) + S(t), where

R(t) :=

∫ t

−∞
Sα(t− s)g(s)ds

S(t) :=

∫ t

−∞
Sα(t− s)ϕ(s)ds.

Now, let (s
′

n) be an arbitrary sequence of real numbers. Since g ∈ AA(R, X) there

exists a subsequence sn of (s
′

n) such that

g(t) := lim
n→∞

g(t+ sn) is well defined for each t ∈ R

and

lim
n→∞

g(t− sn) = g(t), for all t ∈ R.

We define R(t) :=
∫ t

−∞ Sα(t− s)g(s)ds.
Now, consider

R(t+ sn) =

∫ t+sn

−∞
Sα(t+ sn − s)g(s)ds

=

∫ t

−∞
Sα(t− σ)g(σ + sn)dσ

=

∫ t

−∞
Sα(t− σ)gn(σ)dσ

where gn(σ) = g(σ + sn), n = 1, 2, · · ·

R(t+ sn) =

∫ ∞

0

Sα(σ)gn(t− σ)dσ.
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Now, by inequality (2.3)

∥R(t+ sn)∥ ≤
∫ ∞

0

C(θ, α)M

1 + |ω|σα
∥gn(t− σ)∥dσ

≤ C(θ, α)M
|w|−1/απ

α sin(π/α)
∥g∥∞

and by continuity of Sα(·)x we have Sα(t − σ)gn(σ) → Sα(t − σ)g(σ) as n → ∞
for each σ ∈ R fixed and any t ≥ σ. Then by the Lebesgue dominated convergence
theorem,

R(t+ sn) → R(t) as n → ∞ for all t ∈ R.
In similar way we can show that

R(t− sn) → R(t) as n → ∞ for all t ∈ R.

This shows that R(t) ∈ AA(R, X).
Now let us show that S(t) ∈ PAA0(X, ρ). For r > 0, we see that

1

m(r, ρ)

∫ r

−r

∥S(t)∥ρ(t)dt

=
1

m(r, ρ)

∫ r

−r

∥∥∥∫ t

−∞
Sα(t− s)ϕ(s)ds

∥∥∥ρ(t)dt
=

1

m(r, ρ)

∫ r

−r

∫ t

−∞
∥Sα(t− s)∥∥ϕ(s)∥ρ(t)dsdt

=
1

m(r, ρ)

∫ r

−r

∫ ∞

0

∥Sα(s)∥∥ϕ(t− s)∥ρ(t)dsdt

≤ C(θ, α)M

∫ ∞

0

1

1 + |ω|sα
( 1

m(r, ρ)

∫ r

−r

∥ϕ(t− s)∥ρ(t)dt
)
ds

= C(θ, α)M

∫ ∞

0

Ωr(s)

1 + |ω|sα
ds

where, Ωr(s) = 1
m(r,ρ)

∫ r

−r
∥ϕ(t − s)∥ρ(t)dt. Using that the space PAA0(X, ρ) is

translation invariant it follows that t → ϕ(t−s) belongs to PAA0(X, ρ) for each s ∈
R and hence Ωr(s) → 0 as r → ∞. Next, since Ωr is bounded (∥Ωr∥ ≤ ∥ϕ∥∞) and

1
1+|ω|sα is integrable in [0,∞), using the Lebesgue dominated convergence theorem

it follows that limr→∞
∫∞
0

Ωr(s)
1+|ω|sα ds = 0. The proof is now completed. �

The first existence and uniqueness result is based on Banach’s contraction prin-
ciple.

Theorem 3.1. Let ρ ∈ V∞. Let also f = g + ϕ ∈ WPAA(R × X × X, ρ) with
g ∈ AA(R × X × X,X) and ϕ ∈ PAA0(R × X × X, ρ). Assume that (H1)-(H5)
hold. Then (1.1) has a unique mild solution in WPAA(X, ρ) provided

Lf (1 +
ck
b
L

′

f )C(θ, α)M
|w|−1/απ

α sin(π/α)
< 1.

Proof. Consider the operator Γ : WPAA(X, ρ) → WPAA(X, ρ) such that

(Γx)(t) =

∫ t

−∞
Sα(t− s)f(s, x(s),Kx(s))ds, t ∈ R.
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In view of Lemma 3.2 and Lemma 3.3, the operator (Γx) is well-defined.
Now if x, y ∈ WPAA(X, ρ), by inequality (2.3) we have

∥(Γx)(t)− (Γy)(t)∥

=
∥∥∥∫ t

−∞
Sα(t− s)

[
f(s, x(s),Kx(s))− f(s, y(s),Ky(s))

]
ds
∥∥∥

≤
∫ t

−∞
∥Sα(t− s)∥L(X)

∥∥f(s, x(s),Kx(s))− f(s, y(s),Ky(s))
∥∥ds

≤
∫ t

−∞

C(θ, α)M

1 + |ω|(t− s)α
[
Lf

(
∥x(s)− y(s)∥+ ∥Kx(s)−Ky(s)∥

)]
ds. (3.2)

Consider

∥Kx(s)−Ky(s)∥ ≤
∫ t

−∞
|k(t− s)|∥h(s, x(s))− h(s, y(s))∥ds

≤
∫ t

−∞
|k(t− s)|L

′

f∥x(s)− y(s)∥ds

≤ sup
t∈R

∥x(t)− y(t)∥L
′

f

(∫ t

−∞
|k(t− s)|ds

)
≤ sup

t∈R
∥x(t)− y(t)∥L

′

f

∫ ∞

0

|k(s)|ds

≤ sup
t∈R

∥x(t)− y(t)∥L
′

f

∫ ∞

0

cke
−bsds

≤ ck
b
L

′

f sup
t∈R

∥x(t)− y(t)∥.

Using the above estimate, inequality (3.2) becomes,

∥(Γx)(t)− (Γy)(t)∥

≤ Lf (1 +
ck
b
L

′

f ) sup
t∈R

∥x(t)− y(t)∥
∫ ∞

0

C(θ, α)M

1 + |ω|sα
ds

≤ Lf (1 +
ck
b
L

′

f )C(θ, α)M
|w|−1/απ

α sin(π/α)
∥x− y∥WPAA(X,ρ), ∀ t ∈ R.

Thus

∥Γx− Γy∥WPAA(X,ρ) ≤ Lf (1 +
ck
b
L

′

f )C(θ, α)M
|w|−1/απ

α sin(π/α)
∥x− y∥WPAA(X,ρ).

This proves that Γ is a contraction, so by the Banach fixed point theorem there

exist a unique x ∈ WPAA(X, ρ) such that Γx = x, that is x(t) =
∫ t

−∞ Sα(t −
s)f(s, x(s),Kx(s))ds. �

We next study the existence of weighted pseudo almost automorphic mild solu-
tions of equation (1.1) when the perturbation f is not necessarily Lipschitz contin-
uous. For that, we require the following assumption:

(H6) There exists a continuous nondecreasing function W : [0,∞) → (0,∞) such
that

∥f(t, x, y)∥ ≤ W (t)(∥x∥+ ∥y∥) for all t ∈ R and x ∈ X.
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The following existence result is based upon nonlinear Leray-Schauder alterna-
tive theorem.

Theorem 3.2. Let ρ ∈ V∞. Assume that A is sectorial of type ω < 0. Let
(H2) be satisfied and f ∈ WPAA(X, ρ) satisfying (H1) and (H6) and the following
additional conditions:

(i) For each C ≥ 0

lim
|t|→∞

1

h(t)

∫ t

−∞

W
(
(1 + k)Ch(s)

)
1 + |ω|(t− s)α

ds = 0,

where h is the function given in Lemma 2.6. We set

β(C) := C(θ, α)M
∥∥∥ ∫ t

−∞

W
(
(1 + k)Ch(s)

)
1 + |ω|(t− s)α

ds
∥∥∥,

where C(θ, α) and M are constants given inequality (2.3).
(ii) For each ϵ > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ∥u−v∥h ≤ δ

implies that

C(θ, α)M

∫ t

−∞

∥f(s, u(s),Ku(s))− f(s, v(s),Kv(s))∥
1 + |ω|(t− s)α

ds ≤ ϵ, for all t ∈ R.

(iii) lim infξ→∞
ξ

β(ξ) > 1.

(iv) For all a, b ∈ R, a < b and Λ > 0, the set {f(s, x,Kx) : a ≤ s ≤ b, x ∈
Ch(X), ∥x∥h ≤ Λ} is relatively compact in X.

Then equation (1.1) has a weighted pseudo almost automorphic mild solution.

Proof. We define the operator Γ : Ch(X) → Ch(X) by

(Γx)(t) =

∫ t

−∞
Sα(t− s)f(s, x(s),Kx(s))ds, t ∈ R.

We will show that Γ has a fixed point in WPAA(X, ρ). For the sake of convenience,
we divide the proof into several steps.
Step 1: For x ∈ Ch(X), we have that

∥(Γx)(t)∥ ≤ C(θ, α)M

∫ t

−∞

W (∥x(s)∥+K∥x(s)∥)
1 + |ω|(t− s)α

ds

≤ C(θ, α)M

∫ t

−∞

W ((1 + ∥K∥)∥x∥hh(s))
1 + |ω|(t− s)α

ds

It follows from condition (i) that Γ is well defined.
Step 2: The operator Γ is continuous.

In fact, for any ϵ > 0, we take δ > 0 involved in condition (ii). If x, y ∈ Ch(X)
and ∥x− y∥h ≤ δ then

∥(Γx)(t)− (Γy)(t)∥ ≤ C(θ, α)M

∫ t

−∞

∥f(s, x(s),Kx(s))− f(s, y(s),Ky(s))∥
1 + |ω|(t− s)α

ds

≤ ϵ,

which shows the assertion.
Step 3: We will show that Γ is completely continuous.

We set BΛ(X) for the closed ball with center at 0 and radius Λ in the space

X. Let V
′
(t) = Γ(BΛ(Ch(X))) and v

′
= Γ(x) for x ∈ BΛ(Ch(X)). First, we will
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prove that V
′
(t) is a relatively compact subset of X for each t ∈ R. It follows form

condition (i) that the function s → W ((1+K)Λh(t−s))
1+|ω|sα is integrable on [0,∞). Hence,

for ϵ > 0, we can choose a ≥ 0 such that C(θ, α)M
∫∞
a

W ((1+K)Λh(t−s))
1+|ω|sα ds ≤ ϵ.

Since,

v
′
(t) =

∫ a

0

Sα(s)f(t− s, x(t− s),Kx(t− s))ds

+

∫ ∞

a

Sα(s)f(t− s, x(t− s),Kx(t− s))ds

and ∥∥∥ ∫ ∞

a

Sα(s)f(t− s, x(t− s),Kx(t− s))ds
∥∥∥

≤ C(θ, α)M

∫ ∞

a

W ((1 +K)Λh(t− s))

1 + |ω|sα
ds

≤ ϵ

we get v
′
(t) ∈ ac0(N) + Bϵ(X) where c0(N) denotes the convex hull of N and

N = {Sα(s)f(ξ, x,Kx) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ∥x∥h ≤ Λ}. Using the strong
continuity of Sα(·) and property (iv) of f , we can infer thatN is a relatively compact

set and V
′
(t) ⊂ ac0(N) +Bϵ(X), which establishes our assertion.

Next, we show that the set V
′
is equicontinuous. In fact, we can decompose

v
′
(t+ s)− v

′
(t) =

∫ s

0

Sα(σ)f(t+ s− σ, x(t+ s− σ),Kx(t+ s− σ))dσ

+

∫ a

0

[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ),Kx(t− σ))dσ

+

∫ ∞

a

[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ),Kx(t− σ))dσ.

For each ϵ > 0, we can choose a > 0 and δ1 > 0 such that∥∥∥∫ s

0

Sα(σ)f(t+ s− σ, x(t+ s− σ),Kx(t+ s− σ))dσ

+

∫ ∞

a

[Sα(σ + s)− Sα(σ)]f(t− σ, x(t− σ),Kx(t− σ))dσ
∥∥∥

≤ C(θ, α)M
[ ∫ s

0

W ((1 +K)Λh(t+ s− σ))

1 + |ω|σα
dσ

+ 2

∫ ∞

a

W ((1 +K)Λh(t− σ))

1 + |ω|σα
dσ

]
≤ ϵ

2

for s ≤ δ1. Moreover, since {f(t − σ, x(t − σ),Kx(t − σ)) : 0 ≤ σ ≤ a, x ∈
BΛ(Ch(X))} is a relatively compact set and Sα(·) is strongly continuous, we can
choose δ2 > 0 such that ∥[Sα(σ + s) − Sα(σ)]f(t − σ, x(t − σ),Kx(t − σ))∥ ≤ ϵ

2a

for s ≤ δ2. Combining these estimates, we get ∥v′
(t + s) − v

′
(t)∥ ≤ ϵ for s small

enough and independent of x ∈ BΛ(Ch(X)).
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Finally, applying condition (i), we can see that

∥v′
(t)∥

h(t)
≤ C(θ, α)M

h(t)

∫ t

−∞

W ((1 +K)Λh(s)

1 + |ω|(t− s)α
ds

→ 0, |t| → ∞,

and this convergence is independent of x ∈ BΛ(Ch(X)). Hence by Lemma 2.6, V
′

is a relatively compact set in Ch(X).
Step 4:

Let us assume that xλ(·) is a solution of equation xλ = λΓ(xλ) for some 0 < λ <
1. We can estimate

∥xλ(t)∥ = λ
∥∥∥∫ t

−∞
Sα(t− s)f(s, xλ(s),Kxλ(s))ds

∥∥∥
≤ C(θ, α)M

∫ t

−∞

W ((1 +K)∥xλ∥hh(s))
1 + |ω|(t− s)α

ds

≤ β(∥xλ∥h)h(t).

Hence we get

∥xλ∥h
β(∥xλ∥h)

≤ 1

and combining with condition (iii), we conclude that the set {xλ : xλ = λΓ(xλ), λ ∈
(0, 1)} is bounded.
Step 5: It follows from hypothesis (H1)-(H2) and Lemma 3.2 that the function t →
f(t, x(t),Kx(t)) belongs to WPAA(X, ρ) whenever x ∈ WPAA(X, ρ). Hence using
Lemma 3.3, we get Γ(WPAA(X, ρ)) ⊂ WPAA(X, ρ) and noting thatWPAA(X, ρ)
is a closed subspace of Ch(X), consequently we can consider, Γ : WPAA(X, ρ) →
WPAA(X, ρ). Using Steps 1-3, we deduce that this map is completely continuous.
Applying Leray-Schauder alternative theorem, we infer that Γ has a fixed point
x ∈ WPAA(X, ρ), which completes the proof. �

Corollary 3.2. Let ρ ∈ V∞. Assume that A is sectorial of type ω < 0. Let (H2)
satisfying and f ∈ WPAA(X, ρ) satisfying (H1) and the inequality (2.3) and the
following Holder type condition:

∥f(t, x1, x2)− f(t, y1, y2)∥ ≤ γ[∥x1 − y1∥β + ∥x2 − y2∥β ], 0 < β < 1

for all t ∈ R and xi, yi ∈ X for i = 1, 2, where γ > 0 is a constant. Moreover,
assume the following conditions:

(a) f(t, 0, 0) = q

(b) supt∈R C(θ, α)M
∫ t

−∞
(1+K)h(s)β

1+|ω|(t−s)α ds = γ2 < ∞.

(c) For all a, b ∈ R, a < b and p > 0, the set {f(s, x,Kx) : a ≤ s ≤ b, x ∈
Ch(X), ∥x∥h ≤ p} is relatively compact in X.

Then equation (1.1) has a weighted pseudo almost automorphic mild solution.

Proof. Let γ0 = ∥q∥, γ1 = γ. We take W (ξ1 + ξ2) = γ0 + γ1[ξ
β
1 + ξβ2 ]. Then

condition (H6) is satisfied. It follows from (b), we can see that function f satisfies
(i) in Theorem 3.2. Note that for each ϵ > 0 there is 0 < δβ < ϵ

γ1γ2
such that for
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every x, y ∈ Ch(X), ∥x− y∥ ≤ δ implies that

C(θ, α)M

∫ t

−∞

∥f(s, x(s),Kx(s))− f(s, y(s),Ky(s))∥
1 + |ω|(t− s)α

ds ≤ ϵ

for all t ∈ R. The hypothesis (iii) in the statement of the Theorem 3.2 can be easily
verified using the definition of W . So by Theorem 3.2, we can prove equation (1.1)
has a weighted pseudo almost automorphic mild solution. �

4. Example

To illustrate Theorem 3.1, we consider the following fractional integro-differential
equation:

Dα
t w(t, x) =

∂2

∂x2
w(t)− aw(t, x) +Dα−1

t f(w(t, x),Kw(t, x)), t ∈ R, x ∈ [0, π],

Kw(t, x) =

∫ t

−∞
k(t− s)h(w(s, x))ds, (4.1)

w(t, 0) = w(t, π) = 0, (4.2)

where 1 < α < 2, k is a real valued function satisfying |k(t)| ≤ cke
−bt for t ≥ 0 and

ck, b are positive constants, K is bounded and K = γId, f(w(t, x),Kw(t, x)) =(
sin 1

2+cos t+cos
√
2t

+ e−(t+m2)2
)
(sin(w(t, x) + γw(t, x))) for each t ∈ R and a, γ >

0.
Set (X, ∥ · ∥X) = (L2([0, π]), ∥ · ∥2) and define

D(A) = {w ∈ L2([0, π]) : w
′′
∈ L2([0, π]), w(0) = w(π) = 0}

Aw = ∆w = w
′′
, for all w ∈ D(A).

It is well known that A is the infinitisimal generator of an analytic semigroup on
L2([0, π]. Thus A is of sectorial type ω = −a < 0. Set ρ(t) = (t +m2)2 for t ∈ R
then PAA0(X, ρ) is tranlation invarient. We have

∥f(t, w(t, ·), γw(t, ·))− f(t, w1(t, ·), γw1(t, ·))∥2 ≤ ∥w(t, ·)− w1(t, ·)∥2 + γ

≤ ∥w(t, ·)− w1(t, ·)∥2 ≤ (1 + γ)

≤ ∥w(t, ·)− w1(t, ·)∥2

for all w(t, ·), w1(t, ·) ∈ L2([0, π]), t ∈ R. Furthermore, one can easily check that

t → sin 1
2+cos t+cos

√
2t

+ e−(t+m2)2 belongs to WPAA(X, e(t+m2)2) with e−(t+m2)2

as ergodic component and sin 1
2+cos t+cos

√
2t

as its almost automorphic component.

Consequently, f is weighted pseudo almost automorphic function with weight ρ(t) =
(t+m2)2 for t ∈ R. Hence choosing γ and a such that

(1 + γ)a1/α <
α sin(π/α)

C(θ, α)M

assumption of Theorem 3.1 is satisfied and (4.1)-(4.2) has a unique solution in
WPAA(X, ρ).
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5. Conclusion

In this paper, existence results for weighted pseudo almost automorphic inte-
grodifferential equation of fractional order with 1 < α < 2 was proved. These
results constitute an extension of the pseudo almost automorphic conditions for
some nonlinear integrodifferential equations given by Abbas [1] and neutral frac-
tional differential equations given by [55] to weighted pseudo almost automorphic
fractional integrodifferential equations of order 1 < α < 2. As a possible application
of the theoretical results, an example was presented.
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