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MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR
FRACTIONAL EIGENVALUE PROBLEM WITH NONLOCAL

CONDITIONS

MOUSTAFA EL-SHAHED AND WAFA M. SHAMMAKH

Abstract. The nonlinear fractional nonlocal boundary value problem

Dα0+u (t) + λg (t) f (t, u (t)) = 0, t ∈ (0, 1) , n− 1 < α ≤ n,
u (0) = 0, u(k) (0) = 0, 1 ≤ k ≤ n− 2, u′′ (1) = θ [u] ,

is considered under some conditions concerning the principal characteristic

value to the relevant linear operator, where n − 1 < α ≤ n is a real num-
ber, Dα0+ is the standard Riemann-Liouville fractional derivative, and θ [u] =∫ 1
0 u (s) dA (s) is given by Riemann-Stieltjes integral with a signed measure.

The existence of positive solutions is obtained by means of the fixed point

index theory in cones.

1. Introduction

The purpose of this paper is to study the existence of a positive solutions for the
following boundary value problem

Dα
0+u (t) + λg (t) f (t, u (t)) = 0, t ∈ (0, 1) , n− 1 < α ≤ n, (1)

with the nonlocal BCs

u (0) = 0, u(k) (0) = 0, 1 ≤ k ≤ n− 2, u′′ (1) = θ [u] , (2)

where λ > 0 is a parameter and θ [u] is given by a Riemann-Stieltjes integral

θ [u] =
∫ 1

0

u (s) dA (s) . (3)

This type of BC includes, as particular cases, multi-point problems when θ [u] =∑m−2
i=1 αiu (ζi), (see [1,15,18,29]), and a continuously distributed case when θ [u] =∫ 1

0
α (s)u (s) ds,(see[4]).

The nonlocal BVPs have been studied extensively. The methods used therein
mainly depend on the fixed-point theorems, degree theory, upper and lower so-
lutions techniques, and monotone iteration. The existence results are available in
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the literature [2, 3, 5-10, 12, 16, 21, 26-28]. Recently, Wang et al. [19] studied the
nonlocal BVP

Dα
0+u (t) + q (t) f (t, u (t)) = 0, t ∈ (0, 1) , n− 1 < α ≤ n.

u (0) = u′ (0) = ... = u(n−2) (0) = 0, u (1) =
∫ 1

0
u (s) dA (s) ,

where α ≥ 2, Dα
0+ is the standard Riemann-Liouville derivative, q (t) may be singu-

lar at t = 0 and/or t = 1, f (t, u) may also have singularity at u = 0.
∫ 1

0
u (s) dA (s)

denotes the Riemann- Stieltjes integral with a signed measure. It is worth mention-
ing that the idea using a Riemann-Stieltjes integral with a signed measure is due
to Webb and Infante in [23, 24]. The papers [13, 20-25] contain several new ideas,
and give a unified approach to many BVPs.
In this paper, we obtain the results on the existence of one and two positive solution
by utilizing the results of Webb and Lan [25] involving comparison with the principal
characteristic value of a related linear problem to the fractional case. We then use
the theory worked out by Webb and Infante in [22, 23] to study the general nonlocal
BCs.

2. Preliminaries

In this section, we will present some definitions and lemmas that will be used in
the proof of our main results.
Definition 2.1([14, 17]). The fractional integral of order α > 0 of a function
y : (0,∞)→ R is given by

Iα0+y (t) =
1

Γ (α)

∫ t

0

(t− s)α−1
y (s) ds,

provided that the integral on the right-hand side converges.
Definition 2.2([14, 17]). The standard Riemann-Liouville fractional derivative
of order α > 0 of a continuous function y : (0,∞)→ R is given by

Dα
0+y (t) =

1
Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1
y (s) ds,

where n = [α] + 1, provided that the integral on the right-hand side converges.
Definition 2.3([11]). Let E be a real Banach space. A nonempty closed convex
set K ⊂ E is called cone of E if it satisfies the following conditions

(1) x ∈ K, σ ≥ 0 implies σx ∈ K;
(2) x ∈ K, −x ∈ K implies x = 0.

Definition 2.4([11]). An operator is called completely continuous if it is contin-
uous and maps bounded sets into precompact sets.
Lemma 2.1([11, 30]). Suppose T : K → K is a completely continuous operator
and has no fixed points on ∂Kρ

⋂
K. Then the following are true:

(i) If ‖Tu‖ ≤ ‖u‖ for all u ∈ ∂Kρ

⋂
K, then i (T,Kρ

⋂
K,K) = 1, where i is the

fixed point index on K.
(ii) If ‖Tu‖ ≥ ‖u‖ for all u ∈ ∂Kρ

⋂
K, then i (T,Kρ

⋂
K,K) = 0.

Lemma 2.2([11, 30]). Let K be a cone in Banach space E. Suppose that
T : K̄ρ → K is a completely continuous operator. If there exists u0 ∈ K\ {0} such
that u− Tu 6= µu0 for any u ∈ ∂Kr, and µ ≥ 0,i (T,Kρ,K) = 0.
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Lemma 2.3([11, 30]). Let K be a cone in Banach space E. Suppose that
T : K̄ρ → Kis a completely continuous operator. If Tu 6= µu for any u ∈ ∂Kr and
µ ≥ 1, then i (T,Kρ,K) = 1.
Lemma 2.4([14]). Assume that u ∈ C (0, 1)∩L (0, 1) with a fractional derivative
of order α > 0 that belongs to C (0, 1) ∩ L (0, 1). Then

Iα0+D
α
0+u (t) = u (t) + c1t

α−1 + c2t
α−2 + ...+ cnt

α−n.

Lemma 2.5. Let y (t) ∈ C [0, 1] be a given function and n − 1 < α ≤ n, then
u (t) is a solution of BVP (1) – (2) if and only if u (t) is a solution of the integral
equation:

u (t) = γ (t) θ [u] +
∫ 1

0

G0 (t, s) y (s) ds, (4)

where

γ (t) =
tα−1

(α− 1) (α− 2)
, G0 (t, s) =

{
tα−1(1−s)α−3−(t−s)α−1

Γ(α) , 0 ≤ s ≤ t ≤ 1,
tα−1(1−s)α−3

Γ(α) , 0 ≤ t ≤ s ≤ 1.
(5)

Proof. Assume that u (t) is a solution of BVP (1)-(2). Applying Lemma 2.4, (1)
can be reduced to an equivalent integral equation

u (t) = − 1
Γ (α)

∫ t

0

(t− s)α−1
y (s) ds+ c1t

α−1 + c2 t
α−2 + ...+ cn t

α−n. (6)

By (2), we obtain
cn = ... = c2 = 0, and c1 = θ[u]

(α−1)(α−2) + 1
Γ(α)

∫ 1

0
(1− s)α−3

y (s) ds.
Therefore, we obtain

u (t) = tα−1

(α−1)(α−2)θ [u] + tα−1

Γ(α)

∫ 1

0
(1− s)α−3

y (s) ds− 1
Γ(α)

∫ t
0

(t− s)α−1
y (s) ds

= γ (t) θ [u] +
∫ t

0
tα−1(1−s)α−3−(t−s)α−1

Γ(α) y (s) ds+
∫ 1

t
tα−1(1−s)α−3

Γ(α) y (s) ds

= γ (t) θ [u] +
∫ 1

0
G0 (t, s) y (s) ds.

Conversely, if u (t) is a solution of the integral equation (4), using the relation
Dαtα−m = 0, where m = 1, 2, ..., n, where n is the smallest integer greater than or
equal to α, we have

Dα
0+u (t) = Dα

0+t
α−1

(
θ[u]
α−1

)
+Dα

0+t
α−1

(∫ 1

0
(1−s)α−3

Γ(α) y (s) ds
)

−Dα
0+

(∫ t
0

(t−s)α−1

Γ(α) y (s) ds
)

= −Dα
0+I

αy (t) = −y (t) .

A simple computation showed u (0) = 0, u(k) (0) = 0, 1 ≤ k ≤ n− 2, u′′ (1) =
θ [u].
Remark 2.1. G0 (t, s)is the Green’s function for the local BVP

Dα
0+u (t) + λg (t) f (t, u (t)) = 0, t ∈ (0, 1) , n− 1 < α ≤ n,

u (0) = 0, u(k) (0) = 0, 1 ≤ k ≤ n− 2, u′′ (1) = 0.
(7)

Lemma 2.6. G0 (t, s) has the following properties
(i) G0(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1] ;
(ii) c0 (t) Φ0 (s) ≤ G0(t, s) ≤ Φ0 (s) , ∀t, s ∈ [0, 1] ,
where

Φ0 (s) = G0(1, s) =
(1− s)α−3 − (1− s)α−1

Γ (α)
, c0 (t) = tα−1.
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Proof. It is obvious that G0(t, s)is nonnegative and continuous.
(i) For s ≤ t, we have

∂G0(t,s)
∂t = (α−1)

Γ(α)

[
tα−2 (1− s)α−3 − (t− s)α−2

]
≥ (α−1)tα−2

Γ(α)

[
(1− s)α−3 − (t− s)α−2

]
≥ (α−1)tα−2s(1−s)α−3

Γ(α) ≥ 0,

and
G0 (t, s)
Φ0 (s)

=
tα−1 (1− s)α−3 − (t− s)α−1

(1− s)α−3 − (1− s)α−1 ≥ tα−1.

For s ≥ t, we have

∂G0 (t, s)
∂t

=
(α− 1) tα−2 (1− s)α−3

Γ (α)
≥ 0,

and
G0 (t, s)
Φ0 (s)

=
tα−1 (1− s)α−3

(1− s)α−3 − (1− s)α−1 ≥ t
α−1.

Thus, (i) holds.
Defining GA (s) =

∫ 1

0
G0 (t, s) dA (t), it is shown in [21] that the Green’s function

for nonlocal BVP (1)-(2) is given by

G (t, s) =
γ (t)

[1− θ [γ]]
GA (s) +G0 (t, s) . (8)

By similar arguments to [23], we obtain the following Lemma.
Lemma 2.7. If G0 satisfies (i), (ii), then G satisfies (i), (ii) for a function Φ, with
the same interval [a, b]and the same constant c, where

Φ (s) = Φ0 (s) +
‖γ‖

[1− θ [γ]]
GA (s) ,

Φ0 (s) defined in Lemma 2.6, and c = min {c0 (t) , t ∈ [a, b]}
Proof. We have

G (t, s) = γ(t)
[1−θ[γ]]GA (s) +G0 (t, s)

≤ ‖γ‖
[1−θ[γ]]GA (s) + Φ0 (s) =: Φ (s) ,

and for t ∈ [a, b]

G (t, s) ≥ c ‖γ‖
[1− θ [γ]]

GA (s) + cΦ0 (s) = cΦ (s) .

Note that gΦ ∈ L∞ because A has finite variation and GA (s) ≤ Φ (s) var (A).
Thus , the Green’s function G (t, s) satisfies (i) , (ii) for a function Φ and the
constant c. Throughout the paper we assume that:
(iii) A is a function of bounded variation, and GA (s) =

∫ 1

0
G0 (t, s) dA (t) satisfies

GA (s) ≥ 0 for a. e. s ∈ [0, 1]. Note that GA (s) exists for a. e. s ∈ [0, 1]by (i).
(iv) The functions g,Φ satisfy g ≥ 0 almost everywhere, gΦ ∈ L1 [0, 1] , and∫ b

a

Φ (s) g (s) ds > 0.

(v) f : [0, 1] × [0,∞) → [0,∞) satisfies Caratheodory conditions, that is, f (·, u)
is measurable for each fixed u ∈ [0,∞)and f (t, ·) is continuous for almost every
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t ∈ [0, 1], and for each r > 0, there exists φr ∈ L∞ [0, 1] such that 0 ≤ f (t, u) ≤ φr
for all u ∈ [0, r]and almost all t ∈ [0, 1] .
(vi) γ ∈ C [0, 1] , γ(t) ≥ 0, 0 ≤ θ[γ] < 1.

3. Main Result

Set E = C [0, 1]is a Banach space with the norm ‖u‖ = sup
t∈[0,1]

|u (t)|. Let P =

{u ∈ E : u ≥ 0} denote the standard cone of non-negative functions. Define

K =
{
u ∈ P, min

a≤t≤b
u (t) ≥ c ‖u‖

}
, (9)

where [a, b] is some subset of [0, 1] and c = min {c0 (t) : t ∈ [a, b]} .
Note that γ ∈ K soK 6= {0}. For any 0 < r < R < +∞, letKr = {u ∈ K : ‖u‖ < r},
∂Kr = {u ∈ K : ‖u‖ = r}, K̄r = {u ∈ K : ‖u‖ ≤ r}, K̄R\Kr = {u ∈ K : r ≤ ‖u‖ ≤ R}

and Vr =
{
u ∈ K : min

t∈[a,b]
u (t) < r

}
and Vr is bounded for K. Recall that a cone

K in Banach space E is said to be reproducing if E = K −K, and is a total cone
if E = K −K. Define a nonlinear operator T : P → K and a linear operator
L : P → K by

Tu (t) = λ

∫ 1

0

G (t, s) g (s) f (s, u (s)) ds. (10)

and

Lu (t) :=
∫ 1

0

G (t, s) g (s)u (s) ds. (11)

Lemma 3.1([24]). Under the hypotheses (i) –(vi) the maps T : P → E defined
in (10) is compact.
Theorem 3.1. Under the hypotheses (i) –(vi) the map T : P → K.
Proof.

For u ∈ P and t ∈ [0, 1] we have :

Tu (t) ≤ λ
∫ 1

0

Φ (s) g (s) f (s, u (s)) ds.

Hence,

‖Tu‖ ≤ λ
∫ 1

0

Φ (s) g (s) f (s, u (s)) ds.

Also , for t ∈ [a, b], we have :

Tu (t) ≥ cλ
∫ 1

0
Φ (s) g (s) f (s, u (s)) ds

≥ c ‖Tu‖ .

Similar to the proofs of Lemma 3.1 and Theorem 3.1, Lu (t) is compact and maps P
into K. We shall use the Krein-Rutman theorem. We recall that λ is an eigenvalue
of L with corresponding eigenfunction φif φ 6= 0 and λφ = Lφ. The reciprocals
of eigenvalues are called characteristic values of L. The radius of the spectrum
of L,denoted r (L), is given by the well-known spectral radius formula r (L) =

lim
n→∞

‖Ln‖
1/n.



6 MOUSTAFA EL-SHAHED AND WAFA M. SHAMMAKH JFCA-2012/3

Theorem 3.2. [25] Let K be a total cone in a real Banach space E and let
L̂ : E → E be a compact linear operator with L̂ (K) ⊆ K. If r

(
L̂
)
> 0 then there

is φ1 ∈ K\ {0} such that L̂φ1 = r
(
L̂
)
φ1.

Thus λ1 := r
(
L̂
)

is an eigenvalue of L̂, the largest possible real eigenvalue and

µ1 = 1
λ1

is the smallest positive characteristic value.
Lemma 3.2. [25]
Assume that (i) –(iv) hold and let L be as defined in (11). Then r (L) > 0.
Theorem 3.3.
When (i) –(iv) hold, r (L) is an eigenvalue of L with eigenfunction φ1 in K.
Proof. r (L) is an eigenvalue of L with eigenfunction in P, by Theorem 3.2. As L
maps P into K, the eigenfunction belongs to K.
Theorem 3.4 ([25]). Let µ1 = 1/r (L) and φ1 (t) be a corresponding eigenfunc-
tion in P of norm 1. Then m ≤ µ1 ≤M , where

m =

(
sup
t∈[0,1]

∫ 1

0

G (t, s) g (s) ds

)−1

, M =

(
inf

t∈[a,b]

∫ b

a

G (t, s) g (s) ds

)−1

. (12)

If g (t) > 0 for t ∈ [0, 1] and G (t, s) > 0 for t, s ∈ [0, 1], the first inequality is
strict unless φ1 (t) is constant for t ∈ [0, 1]. If g (t)φ (t) > 0for t ∈ [a, b], the second
inequality is strict unless φ1 (t) is constant for t ∈ [a, b].
For the local BVP (7) if g (t) ≡ 1:
We now compute the constant m and the optimal value of M (a, b), that is, we
determine a, b so that M (a, b) is minimal.
For s ≤ t, we have by direct integration∫ t

0
G0 (t, s) ds =

∫ t
0

[
tα−1(1−s)α−3

Γ(α) − (t−s)α−1

Γ(α)

]
ds

= − t
α−1(1−t)α−2

(α−2)Γ(α) + tα−1

(α−2)Γ(α) −
tα

αΓ(α) .

For s ≥ t, ∫ 1

t

G0 (t, s) ds =
∫ 1

t

tα−1 (1− s)α−3

Γ (α)
ds =

tα−1 (1− t)α−2

(α− 2) Γ (α)
.

Then we have : ∫ 1

0

G0 (t, s) ds =
tα−1

(α− 2) Γ (α)
− tα

αΓ (α)
.

And the maximum of this expression occurs when t = 1, hence

sup
t∈[0,1]

∫ 1

0

G0 (t, s) ds =
1

(α− 2) Γ (α)
− 1
αΓ (α)

=
2

(α− 2) Γ (α+ 1)
.

Then m = (α−2)Γ(α+1)
2 .

For a < b, we have by direct integration∫ t
a
G0 (t, s) ds = − t

α−1(1−t)α−2

(α−2)Γ(α) + tα−1(1−a)α−2

(α−2)Γ(α) − (t−a)α

αΓ(α) ,∫ b
t
G0 (t, s) ds = − t

α−1(1−b)α−2

(α−2)Γ(α) + tα−1(1−t)α−2

(α−2)Γ(α) .
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Then∫ b
a
G0 (t, s) ds = tα−1(1−a)α−2

(α−2)Γ(α) − (t−a)α

αΓ(α) −
tα−1(1−b)α−2

(α−2)Γ(α)

= 1
(α−2)Γ(α)

[
tα−1

(
(1− a)α−1 − (1− b)α−1

)
− (α−2)

α (t− a)α
]

= R (t, a, b) ,

∂R (t, a, b)
∂t

=
1

(α− 2) Γ (α)

[
(α− 1) tα−2

(
(1− a)α−2 − (1− b)α−2

)
− (α− 2) (t− a)α−1

]
.

The sign of derivative ∂R
∂t shows that this is an increasing function of t so the

minimum occurs at t = a. Let

R (a, b) =
aα−1

(α− 2) Γ (α)

(
(1− a)α−2 − (1− b)α−2

)
.

The minimal value of M (a, b)corresponds to the maximal value of R (a, b).

∂R (a, b)
∂b

=
aα−1 (1− b)α−3

Γ (α)
> 0.

The quantity R (a, b)is an increasing function of b so its maximum is when b = 1.
Let

R (a) =
aα−1 (1− a)α−2

(α− 2) Γ (α)
.

Then the maximal of R (a)occurs when a = α−1
2α−3

min
t∈[a,b]

∫ b

a

G0 (t, s) ds = R

(
α− 1
2α− 3

, 1
)

=
(α− 1)

α−1

(2α− 3) Γ (α)
.

Hence the minimal value of M (a, b)is :

M

(
α− 1
2α− 3

, 1
)

=
(2α− 3) Γ (α)

(α− 1)
α−1 .

4. The existence of at least one positive solution

For convenience, we introduce the following notations

f̄ (u) := sup
t∈[0,1]

f (t, u) , f (u) := inf
t∈[0,1]

f (t, u) ;

f0 := lim sup
u→0+

f̄ (u)
/
u, f0 := lim inf

u→0+
f (u)

/
u;

f∞ := lim sup
u→∞

f̄ (u)
/
u, f∞ := lim inf

u→∞
f (u)

/
u,

f0,r := sup
{0≤t≤1,0≤u≤r}

f (t, u) /r, fr,r/c := inf
{a≤t≤b,r≤u≤r/c}

f (t, u) /r.

Under the hypotheses (i)-(iv) let L̃ be defined by :

L̃u (t) =
∫ b

a

G (t, s) g (s)u (s) ds.

Then L̃ is a compact linear operator and L̃ (P ) ⊆ K.
Hence r

(
L̃
)

is an eigenvalue of L̃ with an eigenfunction φ̃1 in K. Let µ̃1 := 1

r(L̃) .

Note that µ̃1 ≥ µ1, hence the condition in the following theorem is more stringent
than if could user (L).
Theorem 4.1. Assume that
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(A1) 0 ≤ λf0 < µ1,
(A2) µ̃1 < λf∞ ≤ ∞.
Then (1)-(2) has at least one positive solution.
Proof. (A1) Let ε > 0 be such that f0 ≤ 1

λ (µ1 − ε). Then there exists ρ0 > 0
such that f (t, u) ≤ 1

λ (µ1 − ε)u for all u ∈ [0, ρ0] and almost all t ∈ [0, 1]. Let
ρ ∈ (0, ρ0], we prove that

Tu 6= βu foru ∈ ∂Kρ and β ≥ 1, (13)
which implies the result. In fact , if (13) doesn’t hold, then there exist u ∈ ∂Kρ

and β ≥ 1 such that Tu = βu. This implies

βu (t) = λ
∫ 1

0
G (t, s) g (s) f (s, u (s)) ds

≤ (µ1 − ε)
∫ 1

0
G (t, s) g (s)u (s) ds = (µ1 − ε)Lu (t) .

Thus , we have shown u (t) ≤ (µ1 − ε)Lu (t). This gives

u (t) ≤ (µ1 − ε)L [(µ1 − ε)Lu (t)] = (µ1 − ε)2
L2u (t) ,

and iterating u (t) ≤ (µ1 − ε)n Lnu (t) for n ∈ N . Therefore

‖u‖ ≤ (µ1 − ε)n ‖Ln‖ ‖u‖
1 ≤ (µ1 − ε)n ‖Ln‖ ,

and we have
1 ≤ (µ1 − ε) lim

n→0
‖Ln‖1/n = (µ1 − ε)

1
µ1

< 1,

a contradiction. It follows that

ik (T,Kρ) = 1, for each ρ ∈ (0, ρ0] . (14)

(A2) Let ρ1 > 0, ρ1 > ρ be chosen so that f (t, u) > µ̃1
λ u for all u ≥ cρ1, c as in (ii)

and almost all t ∈ [0, 1].
We claim that u 6= Tu+ βφ̃1 for all β > 0 and u ∈ ∂Kρ∗ when ρ∗ > ρ1. Note that
for u ∈ Kwith ‖u‖ = ρ∗ ≥ ρ1.
We have u (t) ≥ cρ1 for all t ∈ [a, b].
Now, if our claim is false , then we have

u (t) = λ

∫ 1

0

G (t, s) g (s) f (s, u (s)) ds+ βφ̃1 (t) .

Therefore,
u (t) ≥ µ̃1

∫ b
a
G (t, s) g (s)u (s) ds+ βφ̃1 (t)

= µ̃1L̃u (t) + βφ̃1 (t) .
(15)

From (15) we firstly deduce that u (t) ≥ βφ̃1 (t) on [a, b]. Then we have

µ̃1L̃u (t) ≥ µ̃1L̃
(
βφ̃1 (t)

)
= βφ̃1 (t) .

Inserting this into (15) we obtain u (t) ≥ 2βφ̃1 (t) for t ∈ [a, b]. Repeating this
process gives u (t) ≥ nβφ̃1 (t) for t ∈ [a, b], n ∈ N . Since φ̃1 (t)is strictly positive
on [a, b] this is a contradiction, then

iK (T,Kρ∗) = 0, foru ∈ ∂Kρ∗ . (16)
By (14) and (16), one has

iK
(
T,Kρ∗\K̄ρ

)
= iK (T,Kρ∗)− iK (T,Kρ) = −1.
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Therefore, T has at least one fixed point u0 ∈ Kρ∗\K̄ρ, and u0 is a positive solution
of BVP (1)-(2).
Theorem 4.2. Assume that
(A3) µ1 < λf0 ≤ ∞,
(A4) 0 ≤ λf∞ < µ1.
Then (1)-(2) has at least one positive solution.
Proof. (A3) Let ε > 0 satisfy f0 >

1
λ (µ1 + ε). Then there exists R1 > 0 such that

f (t, u) ≥ 1
λ

(µ1 + ε)u forallt ∈ [0, 1] , u ∈ [0, R1] . (17)

For any u ∈ ∂KR1we have by (17) that

Tu (t) = λ
∫ 1

0
G (t, s) g (s) f (s, u (s)) ds

≥ (µ1 + ε)
∫ 1

0
G (t, s) g (s)u (s) ds

≥ µ1Lu (t) , ∀t ∈ [0, 1] .
(18)

Let ũ1 be the positive eigenfunction of L corresponding to µ1, that ũ1 = µ1Lũ1. We
may suppose that T has no fixed point on ∂KR1 , otherwise, the proof is finished.
In the following we will show that

u− Tu 6= βũ1 for allu ∈ ∂KR1 , β ≥ 0. (19)

If (19) is not true, then there is ũ0 ∈ ∂KR1 and β0 ≥ 0 such that ũ0−T ũ0 = β0ũ1.
It is clear that β0 > 0 and ũ0 = T ũ0 + β0ũ1 ≥ β0ũ1. Set

β∗ = sup {β : ũ0 ≥ βũ1} . (20)

Obviously, β∗ ≥ β0 > 0. It follows from L (P ) ⊂ P that

µ1Lũ0 ≥ µ1Lβ
∗ũ1 = β∗µ1Lũ1 = β∗ũ1.

Using this and (18), we have

ũ0 = T ũ0 + β0ũ1 ≥ µ1Lũ0 + β0ũ1 ≥ β∗ũ1 + β0ũ1,

which contradicts (24). Thus, (19) holds.
By Lemma 2.2, we have

iK (T,KR1) = 0. (21)

On the other hand, Let ε > 0 satisfy f∞ < 1
λ (µ1 − ε) . Then there exists R2 > R1

such that:

f (t, u) ≤ 1
λ

(µ1 − ε)u. ∀t ∈ [0, 1] , u ≥ R2. (22)

By (v) there exists an L∞function ϕ1 such that f (t, u) ≤ 1
λϕ1(t) for all u ∈ [0, R2]

and t ∈ [0, 1]. Hence, we have

f (t, u) ≤ 1
λ

[(µ1 − ε)u+ ϕ1(t)] for allu ∈ R+, t ∈ [0, 1] . (23)

Since 1/µ1 is the radius of the spectrum of L, (I/ (µ1 − ε)− L)−1 exists. Let:
C =

∫ 1

0
ϕ1(s)Φ (s) g (s) ds and R0 = (I/ (µ1 − ε)− L)−1 (c/ (µ1 − ε)). We prove

that for each R > R0 ,

Tu 6= βu for allu ∈ ∂KR andβ ≥ 1. (24)

In fact , if not, there exist u ∈ ∂KR and β ≥ 1 such that Tu = βu.
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This together with (23) , implies

u (t) ≤
∫ 1

0
G (t, s) g (s) ((µ1 − ε)u (s) + ϕ1 (s)) ds

= (µ1 − ε)
∫ 1

0
G (t, s) g (s)u (s) ds+

∫ 1

0
G (t, s) g (s)ϕ1 (s) ds

= (µ1 − ε)Lu (t) + C.

This implies(
I

µ1−ε − L
)
u (t) ≤ C

µ1−ε and u (t) ≤
(

I
µ1−ε − L

)−1 (
C

µ1−ε

)
= R0.

Therefore, we have ‖u‖ ≤ R0 < R, a contradiction. Take R > R2, it follows from
(24) and properties of index that

iK (T,KR) = 1, ∀R > R0. (25)

Now (21) and (25) combined imply

iK
(
T,KR\K̄R1

)
= iK (T,KR)− iK

(
T, K̄R1

)
= 1.

Therefore, T has at least one fixed point u0 ∈ KR

/
K̄R1 , and u0 is a positive solution

of BVP (1)-(2).

5. The existence of two positive solution

Theorem 5.1. Suppose that (A2), (A3) and
(A5) λf0,ρ′ ≤ m for some ρ′ > 0 .
Then (1)-(2) has at least two positive solutions.
Proof. By (A5), we have

Tu (t) = λ
∫ 1

0
G (t, s) g (s) f (s, u (s)) ds

≤
∫ 1

0
G (t, s) g (s) ρ′mds,

so that ‖Tu‖ ≤ ρ′ = ‖u‖ , for all u ∈ ∂Vρ′ . Now Lemma 2.1, yields

ik (T, Vρ′) = 1. (26)

On the other hand, in view of (A2), we may take ρ∗ > ρ′so that (16) holds (see the
proof of Theorem 4.1). From (A3), We may take R1 ∈ (0, ρ′)so that (21) holds (see
the proof Theorem 4.2).
Combining (26), (16) and (21), we arrive at

ik
(
T,Kρ∗\V̄ρ′

)
= 0− 1 = −1,

and
ik
(
T, Vρ′\K̄R1

)
= 1− 0 = 1.

Consequently, Thas at least two fixed points, with one on Kρ∗\V̄ρ′ and the other
on Vρ′\K̄R1 . Therefore, (1)-(2) has at least two positive solutions.
Theorem 5.2. Suppose that (A1),(A4) and
(A6) λfρ′,ρ′/c ≥M for some ρ′ > 0 .
Then (1)-(2) has at least two positive solutions.
Proof. By (A6), we have

Tu (t) = λ
∫ 1

0
G (t, s) g (s) f (s, u (s)) ds

≥ λ
∫ b
a
G (t, s) g (s) f (s, u (s)) ds

≥
∫ b
a
G (t, s) g (s)Mρ′ds,

so that ‖Tu‖ ≥ ρ′ = ‖u‖ , for all u ∈ ∂Vρ′ , and by Lemma 2.1, yields

ik (T, Vρ′) = 0. (27)
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On the other hand, in view of (A1), We may take ρ ∈ (0, ρ′)so that (14) holds (see
the proof Theorem 4.1). In addition, from (A4), we may take R > ρ′ so that (25)
holds (see the proof of Theorem 4.2).
Combining (27), (14) and (25), we arrive at

ik
(
T,KR\V̄ρ′

)
= 1− 0 = 1,

and
ik
(
T, Vρ′\K̄ρ

)
= 0− 1 = −1.

Hence, T has at least two fixed points, with one on Vρ′\K̄ρ and the other on
KR\V̄ρ′ . Therefore, (1)-(2) has at least two positive solutions.

6. Nonexistence results

We now give a nonexistence result which shows that the above result on existence
of one solution is sharp.
Definition 6.1. We say that a bounded linear operator L is u0 − positiveon
the cone P, if there exists u0 ∈ P\ {0}, such that for every u ∈ P\ {0} there are
positive constants k1 (u) , k2 (u) such that k1 (u)u0 (t) ≤ Lu (t) ≤ k2 (u)u0 (t) , for
every t ∈ [0, 1].
Theorem 6.1([7,19]). Suppose that L is u0 − positivefor some u0 ∈ P\ {0}. Let
µ1 = 1/r (L)be the principal characteristic value of L. Suppose that one of the
following conditions hold.
(i) f (t, u) < µ1u, for all u > 0 and almost all t ∈ [0, 1].
(ii) f (t, u) > µ1u, for all u > 0 and almost all t ∈ [0, 1].
If (i) holds, then 0 is the unique fixed point of T in P . If (ii) holds, then 0 is the
only possible fixed point of T in P .
Theorem 6.2. If g and gGA (s) are integrable functions, thenG (t, s) ≤W (s) c0 (t)
for a function Wwith Wg ∈ L1 (0, 1) ,so L0 is c0 − positiveon P .
Proof. We have

G (t, s) = γ(t)GA(s)
1−θ[γ] −

(t−s)α−1

Γ(α) H (t− s) + tα−1(1−s)α−3

Γ(α) H (1− s)
≤ c0 (t)

[
GA(s)
1−θ[γ] + (1−s)α−3

Γ(α) H (1− s)
]

= c0 (t)W (s) .

We illustrate the applicability of these results with some examples.
Example 6.1. Consider the problem

D(6.5)u (t) + λ (5t+ 3)
(

6u2+u
u+1

)
(3 + sinu) = 0, t ∈ (0, 1) ,

u (0) = 0, u(k) (0) = 0, 1 ≤ k ≤ 5, u′′ (1) = 0.
(28)

Here we have g (t) = 5t+ 3, f (u) = (3 + sinu) 6u2+u
u+1 and 6 < α ≤ 7.

It is readily shown that f0 = f0 = 3, f∞ = 24, f∞ = 12. Also, 3u ≤ f (u) ≤
24ufor u ≥ 0. By calculation, we find m = 945.1744, the smallest M calculated is
M (a, b) ≈M (0.5661, 1) ≈ 203765.1892. We find µ1 ≈ 107683. Hence, by Theorem
4.1, there is at least one positive solution if 3λ < µ1 and 12λ > µ1; that is, there is
a positive solution if λ ∈ (8973.5833, 35894.3333). By Theorem 6.1, there does not
exist a positive solution if either 3λ > µ1 or 24λ < µ1; that is, if λ < 4486.7917
or λ > 35894.3333 no positive solution exists. For g (t) ≡ 1 the corresponding
constants are

m = 4210.3222, M = 1261771.943, µ1 ≈ 105890.
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