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NON-OSCILLATORY BEHAVIOR OF HIGHER ORDER HILFER
FRACTIONAL DIFFERENCE EQUATION

S. ARUNDHATHI, V. MUTHULAKSHMI

Abstract. In this paper, we look into the non-oscillatory behavior of the higher
order Hilfer fractional difference equation. The approach we employ is based
on certain fundamental concepts derived from discrete fractional calculus and
mathematical inequalities. In order to aid in arriving at the important end result,
a volterra-type summation equation is constructed as a similar representation of
our problem. We were able to come up with new, easier to implement condition
that satised by the non-oscillatory solutions to our analyzed equation. To demon-
strate the empirical reliability of the theoretical nding, we lend a numerical
example.

1. Introduction

Prior to the beginning of the 20th century, mathematical theory about fractional
calculus had been put forth. The advent of new fractional operators broadens the
range of denitions and claries their diverse uses. Its non-local feature opens
up new paths for research and applications in important interdisciplinary issues
in physical, biological and engineering sciences [12, 13, 2].

Discrete fractional calculus is a new discipline, similar to its continuous counter-
part. The theory of delta fractional calculus has been expanded by the contributions
of noted mathematicians such as Atici, Eloe, Abdeljawad, and Anastassiou, to
point out a few [10, 11, 1, 8, 19, 22]. It has gained prominence in the last decade
due to its intrinsic complexity and non-local features. The development of its
theory is still in progress, which opens up new doors along with possibilities for
exploration in this domain.

The most recent study has focused on the existence and uniqueness, stability,
and oscillation of the solutions owing to guring out the behavior of solutions
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is of the utmost importance for understanding equations [14, 23, 15]. Indeed,
the oscillation theory offers important insights into the dynamics of solutions
to equation-modeled problems in many scientic and technical domains. Many
scientists have directed their research efforts toward the remarkably constructive
and fast-advancing eld of oscillation theory of fractional order difference equations
in recent years [9, 6].

Motivated by the concept of Hilfer fractional derivative [24], Haider et.al [19]
introduced the Hilfer discrete fractional operator, which is a generalization of
Riemann-Liouville and Caputo operators. This operator interpolates both the
Riemann-Liouville and Caputo operators, and T.Y.Uzun [25] studied the oscillatory
behavior of some higher order fractional difference equation using this operator.

Although the oscillatory behavior was the focus of research, non-oscillatory
behavior for nonlinear fractional difference equations still need work. Yet, a few
mathematicians determined the non-oscillatory behavior for the solutions of the
following sorts of nonlinear fractional difference equations:

Graef et.al [18] studied for the following forced fractional differential equation
with positive and negative terms of the form

cDϖ
b y() + Υ1(, x()) = e() + g()xϱ() + Υ2(, x()),

where ϖ  (0, 1) and cDϖ
b y denotes the Caputo fractional derivative of y of order

ϖ. They examined for y() = (d()(x′())ϱ)′ and y() = d()(x′())ϱ.
Alzabut et.al [4] studied for the following forced nabla fractional difference

equation with positive and negative terms of the form

ϖ
b∗y() + Υ1(, x()) = e() + g()x() + Υ2(, x()),

where ϖ  (0, 1) and ϖ
b∗y denotes the Caputo nabla fractional difference of y of

order ϖ. They examined for y() = (d()x()) and y() = d()x().
Alzabut et.al [3] studied for the following higher order forced nabla fractional

difference equation with positive and negative terms of the form

ϖ
b∗y() + Υ1(, x()) = e() + g()xϱ() + Υ2(, x()),

where ϖ  (0, 1) and ϖ
b∗y denotes the Caputo nabla fractional difference of y of

order ϖ. They examined for y() = m−1d()(x())ϱ

,m  N1.

Alzabut et.al [5] studied for the following forced delta fractional difference
equation with positive and negative terms of the form

∆ϖy()+Υ1(+ϖ, x(+ϖ)) = e(+ϖ)+ g(+ϖ)xϱ(+ϖ)+Υ2(+ϖ, x(+ϖ)),

where ϖ  (0, 1] and ∆ϖy is the Caputo delta fractional difference of y of order
ϖ. They examined for y() = ∆(d()(∆x())ϱ), y() = d()(∆x())ϱ and y() =
x().

Urged by the aforementioned works, to provide an afrming response regarding
the behavior of non-oscillatory solutions, we look into the higher-order forced
fractional difference problem with the Hilfer difference operator of the form


∆ϖ,
b y() + Υ1(, x( +ϖ− 1)) = e() + g()xϱ( +ϖ− 1) + Υ2(, x( +ϖ− 1))

∆−(1−τ)
b y()=b+1−τ = y0,

(1)
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where y() = ∆m−1[d()(∆x())ϱ], m  N ∪ 0, 0 < ϖ ≤ 1, 0 ≤  ≤ 1,
  Nb+1−ϖ, τ = ϖ+ −ϖ and ∆ϖ,

b is the Hilfer Type fractional difference
operator of order ϖ and type . Also, Υ1, Υ2 : Nb+1−ϖ ×R → R, e, g, d : Nb+1−ϖ

→ R, are continuous functions. Here Na = a, a+ 1, a+ 2, ....

The layout of the article is as follows: A few fundamental yet signicant denitions
and ndings from discrete calculus are presented in section 2. In section 3, we
use discrete fractional calculus features and mathematical inequalities to offer
sufcient conditions for a solution to be non-oscillatory. Section 4 presents approp-
riate illustrations to support the theoretical conclusions.

2. Preliminaries

In the subsequent section, we present some preliminary discrete fractional
calculus observations that will be applied to the main ndings.

Defnition 1. [10] Let x : Nb → R and ϖ > 0. Then the ϖ-th fractional sum of x is
dened by

∆−ϖ
b x() :=

−ϖ

∑
ϑ=b

hϖ−1(, σ(ϑ))x(ϑ)

for   Nb+ϖ, where ϑ(ϖ) = Γ(ϑ+1)
Γ(ϑ+1−ϖ)

and hϖ(ϑ, θ) =
(ϑ−θ)(ϖ)

Υ(ϖ+1) .

Defnition 2. [10] Let x : Nb → R and ⌈ϖ⌉ = n. Then the ϖ-th Riemann-Liouville
fractional difference of x is dened by

∆ϖ
b x() := ∆n∆−(n−ϖ)

b x(),   Nb+n−ϖ.

Defnition 3. [7] Let x : Nb → R and ⌈ϖ⌉ = n. Then the ϖ-th Caputo fractional
difference of x is dened by

∆ϖ
b x() := ∆−(n−ϖ)

b ∆nx(),   Nb+n−ϖ.

Defnition 4. [19] Let x : Nb → R and ⌈ϖ⌉ = n. Then the Hilfer like fractional
difference of order ϖ and type 0 ≤  ≤ 1 of function x is dened by

∆ϖ,
b x() := ∆−(n−ϖ)

b+(1−)(n−ϖ)
∆n∆−(1−)(n−ϖ)

b x(),   Nb+n−ϖ.

The special cases Riemann-Liouville fractional difference and Caputo fractional
difference will be obtained by putting  = 0 and  = 1, respectively.

Lemma 1. (Young’s inequality [20])
(i) If χ and ζ are non-negative, u > 1 and 1

u + 1
v = 1, then χζ ≤ 1

uχ
u + 1

vζ
v,

where equality holds if and only if ζ = χu−1.
(ii) If χ and ζ are non-negative, 0 < u < 1 and 1

u + 1
v = 1, then χζ ≥ 1

uχ
u + 1

vζ
v,

where equality holds if and only if ζ = χu−1.

Lemma 2. If > and 0 < < 1, then

( − )

Γ( + 1)
< h ( , ) <

( − + 1)
Γ( + 1)

.

Proof. Using Gaustchis inequality [16], we can easily get the proof. □
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Lemma 3. [17] Let x : Nb → R, l  N0, p− 1 < ϖ1 < p and q− 1 < ϖ2 ≤ q. Then

(i) For   Nb+ϖ1+ϖ2 , ∆
−ϖ1
b+ϖ2

∆−ϖ2
b x() = ∆−ϖ1−ϖ2

b x() = ∆−ϖ2
b+ϖ1

∆−ϖ2
b x().

(ii) For   Nb+ϖ1 , ∆
l∆−ϖ1

b x() = ∆l−ϖ1
b x().

(iii) For   Nb+q−ϖ2+ϖ1 , ∆
−ϖ1
b+q−ϖ2

∆ϖ2
b x() = ∆ϖ2−ϖ1

b x()−∑q−1
k=0 hb−q+k(, b+

q−ϖ1)

∆k−(b−ϖ2)
α x(b+ q−ϖ2).

Lemma 4. If : N → R,  N0, then

∆− ∆ () = ()−
−1

∑
=0

∆ ( )h (, ),

for   N + .

Proof. Using Lemma 3(iii), we get the result. □

Lemma 5. [21] Let ( ) and ( ) be non-negative sequences and and be non-
negative constants. If

≤ + ∑
=0

,

then

≤ exp ∑
=0

.

Lemma 6. The Hilfer fractional difference problem (1) has an unique solution

y() = hb−1(, b+ 1− τ)y0 +
−ϖ

∑
s=b+1−ϖ

hϖ−1(, σ(s))[e(s) + g(s)x(s+ϖ− 1) +

Υ2(s, x(s+ϖ− 1)− Υ1(, x( +ϖ− 1)))].

Proof. Applying ∆−ϖ
b+1−ϖ on both sides of (1), we obtain

∆−ϖ
b+1−ϖ∆

ϖ,
b y() = ∆−ϖ

b+1−ϖ [e() + g()x( +ϖ− 1) + Υ2(, x(s+ϖ− 1)

−Υ1(, x( +ϖ− 1)))].

Now,

∆−ϖ
b+1−ϖ∆

ϖ,
b y() = ∆−ϖ

b+1−ϖ [∆
−(1−ϖ)
b+(1−)(1−ϖ)

∆1∆−(1−)(1−ϖ)
b y()]

= ∆−ϖ−(1−ϖ)
b+1−ϖ−(1−ϖ)

∆1∆−(1−)(1−ϖ)
b y()

= ∆−ϖ−(1−ϖ)
b+1−ϖ ∆ϖ+(1−ϖ)

b y()

= y()− hτ−1(, b+ 1− τ)y0.

This completes the proof.
□
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3. Behavior of Non-Oscillatory solutions

In this section, we gure out the behavior of non-oscillatory solutions for the
Hilfer fractional difference problem (1). To get the result, we take into account
the following considerations:

(C .1) Υk(,x)
x > 0, (k = 1, 2), x ̸= 0,   Nb+1−ϖ,

(C .2) Υ1(, x) ≥ Ω1()xα1 , Υ2(, x) ≤ Ω2()xα2 , x ̸= 0,   Nb+1−ϖ

for some continuous functions Ωk : Nb+1−ϖ → R+, k = 1, 2 and for some
positive real numbers α1 > α2.

For  Nb+1−ϖ, denote

G( ) =
α1 − α2

α2
Ω1( )


α2
α1

Ω2( )

Ω1( )

 α1
α1−α2

and

H( ) =
+ϖ

∑
=b+1


1

d( )

1/ϱ

.

Theorem 1. Suppose (C .1) and (C .2) agree and assume that there exists a positive real
number β such that

lim
→∞

−ϖ

∑
s=b+1−ϖ

hϖ−1(, σ(s))e(s) < ∞, (2)

lim
→∞

−ϖ

∑
s=b+1−ϖ

hϖ−1(, σ(s))G(s) < ∞ (3)

and

lim
→∞

−m−1

∑
s=b+1−ϖ

gβ(s+ 1−ϖ)smβHϱβ(s) < ∞. (4)

Then every non-oscillatory solution x() of (1) satises

lim sup
→∞

x()
m/ϱH()

< ∞. (5)

Proof.

Suppose that x() represents a non-oscillatory solution to (1). Assuming that
x() is eventually a positive solution of (1) on Nb, we can get a sufciently large
1 > b+ 1 such that x() > 0 for   N1 . By using Lemma 6, we can say

y() = hτ−1(, b+ 1− τ)y0 +
−ϖ

∑
s=b+1−ϖ

hϖ−1(, σ(s))e(s)+

1−ϖ−1

∑
s=b+1−ϖ

hϖ−1(, σ(s))g(s)x(s+ϖ− 1)+
−ϖ

∑
s=1−ϖ

hϖ−1(, σ(s))g(s)x(s+ϖ− 1)+

1−ϖ−1

∑
s=b+1−ϖ

hϖ−1(, σ(s))[Υ2(s, x(s+ϖ− 1))− Υ1(, x( +ϖ− 1))]+
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−ϖ

∑
s=1−ϖ

hϖ−1(, σ(s))[Υ2(s, x(s+ϖ− 1)− Υ1(, x( +ϖ− 1)))].

Simplifying using Lemma 2, (2), (C .1) and (C .2) , we get

y() < C0 +
−ϖ

∑
s=1−ϖ

hϖ−1(, σ(s))g(s)x(s+ϖ− 1)+

−ϖ

∑
s=1−ϖ

hϖ−1(, σ(s))[Ω2(s)xα2(s+ϖ− 1)−Ω1(s)xα1(s+ϖ− 1)],

for some constant C0 > 0. By choosing χ = xα2(s + ϖ − 1), ζ = α2
α1
[Ω2(s)
Ω1(s)

],
u = α1/α2 and v = α1/(α1 − α2) in Lemma 1(i), we have

Ω2(s)xα2(s+ϖ− 1)−Ω1(s)xα1(s+ϖ− 1) ≤ G(s). (6)

Using (6) and (3), we obtain

∆m−1[d()(∆x())ϱ] < C1 +
−ϖ

∑
s=1−ϖ

hϖ−1(, σ(s))g(s)x(s+ϖ− 1),

for some constant C1 > 0. Using Lemma 4, we obtain

d()(∆x())ϱ <
m−2

∑
j=0

∆j[d(1)(∆x(1))ϱ]hj(, 1)+

−m+1

∑
t=1

hm−2(, σ(t))

C1 +

t−ϖ

∑
s=1−ϖ

hϖ−1(t, σ(s))g(s)x(s+ϖ− 1)

.

Simplifying the aforementioned inequality using Lemma 2, we have,

d()(∆x())ϱ < C2m +
−m−1

∑
s=1

( − s+ 1+ϖ)(ϖ−1)g(s−ϖ)x(s− 1), (7)

for some constant C2 > 0. Now,

−m−1

∑
s=1

( − s+ 1+ϖ)(ϖ−1)g(s−ϖ)x(s− 1)

≤


−m−1

∑
s=1


( − s+ 1+ϖ)(ϖ−1)

α
1/α −m−1

∑
s=1

gβ(s−ϖ)xβ(s− 1)

1/β

< C3m


−m−1

∑
s=1

gβ(s−ϖ)xβ(s− 1)

1/β
,

for some constant C3 > 0. Therefore, (7) becomes

d()(∆x())ϱ < C2m + C3m


−m−1

∑
s=1

gβ(s−ϖ)xβ(s− 1)

1/β
.
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Taking () = C2 + C3

∑−m−1

s=1
gβ(s−ϖ)xβ(s− 1)

1/β
, we have

d()(∆x())ϱ < m (),

and hence

∆x() <

m ()

d()

 1
ϱ

.

Computing the aforementioned inequality’s sum from 1 to  − 1, we get

x() < x(1) + (m ())
1
ϱ

−1

∑
s=1


1

d(s)

 1
ϱ

=⇒ x()
H()

<
x(1)
H(1)

+ (m ())
1
ϱ < C4 + (m ())

1
ϱ .

By employing the fundamental inequality, (A + B)κ ≤ 2κ−1(Aκ + Bκ), A,B ≥
0, κ ≥ 1, we get


x()
H()

ϱ

< C5 + C6


−m−1

∑
s=1

gβ(s−ϖ)xϱβ(s− 1)

1/β
,

for some positive constants C5 and C6. Again employing the above fundamental
inequality, we get


x()
m/ϱH()

ϱβ

< C7 + C8


−m−1

∑
s=1−1

gβ(s+ 1−ϖ)smβHϱβ(s)


x(s)

sm/ϱH(s)

ϱβ

,

for some positive constants C7 and C8. Using Lemma 5, we obtain


x()
m/ϱH()

ϱβ

< C9 exp


−m−1

∑
s=1−1

gβ(s+ 1−ϖ)smβHϱβ(s)


,

where C9 is a constant. In accordance with the hypothesis (4), we have

lim sup
→∞

x()
m/ϱH()

< ∞.

The procedure is identical for an eventually negative solution, and so we have left
it out here. Thus, the theorem is veried. □

Corollary 1. Suppose (C .1), (C .2), (2), (3) and y() = x() agree and assume that
there exists a positive real number β such that

lim
→∞

−1

∑
s=b+1−ϖ

gβ(s+ 1−ϖ)(s+ϖ) < ∞. (8)

Then every non-oscillatory solution x() of (1) satises

lim sup
→∞

x()


< ∞. (9)
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4. Example

Here, we highlight our main result by offering a numerical example.

Example 1. Let us examine


∆.3,.2
.1 y() + ( + 1)4x2( − .5) = 2

2
+ 1

10
x3( +ϖ− 1) + x( − .5)

∆−(1−τ)
b y()=b+1−τ = y0,

(10)

where y() = ∆2[ 1
3
(∆x())3].

Here ϖ = .5,  = .2, b = .1, g() = 1/10, e() = 2
√


2
, m = ϱ = 3 and

d() = 1/3. Then,

lim
→∞

−ϖ

∑
s=b+1−ϖ

hϖ−1(, σ(s))e(s) = lim
→∞

−.5

∑
s=.6

h−.5(, σ(s))
2
√


s2
< lim

→∞

−.5

∑
s=.6

1
s2

< ∞.

Let us choose Ω1() = 4, Ω2() = , α1 = 2 and α2 = 1. Then, (C .1) and (C .2)
are satised and G() = 1/42. So, we have

lim
→∞

−ϖ

∑
s=b+1−ϖ

hϖ−1(, σ(s))G(s) = lim
→∞

−.5

∑
s=.6

h−.5(, σ(s))
1
s2

< ∞.

Next, by taking β = 2, we get

lim
→∞

−m−1

∑
s=b+1−ϖ

gβ(s+ 1−ϖ)smβHϱβ(s) = lim
→∞

=
−2

∑
s=.6

s6(s− .6)6(s+ 1.6)6

32(s+ .5)20
< ∞.

Therefore, by Theorem 1, every non-oscillatory solution x() of (10) satises

lim sup
→∞

x()
( − .6)( + 1.6)

< ∞.

Conclusion

In line with prior research that focuses on oscillation criteria, our work introdu-
ced few conditions for studying the behavior of non-oscillatory solutions to the
Hilfer fractional difference equation. The main equation has a broad scope and
can be applied to particular cases [5]. Our main result is proven by constructing
an equivalent representation of the main equation and by using mathematical
inequalities. The validity of the theoretical result is conrmed with a numerical
example. Further, it strengthened some previous ndings in the literature.

Acknowledgements: The authors are very grateful to the anonymous referees for
their valuable suggestions and comments, which helped to improve the quality
of the paper.
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